Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4797-4800, 2022 07.
Article in English | MEDLINE | ID: mdl-36086130

ABSTRACT

Corticokinematic coherence (CKC) is computed between limb kinematics and cortical activity (e.g. MEG, EEG), and it can be used to detect, quantify and localize the cortical processing of proprioceptive afference arising from the body. EEG-based studies on CKC have been limited to lab environments due to bulky, non-portable instrumentations. We recently proposed a wireless and miniaturized EEG acquisition system aimed at enabling EEG studies outside the laboratory. The purpose of this work is to compare the EEG-based CKC values obtained with this device with a conventional wired-EEG acquisition system to validate its use in the quantification of cortical proprioceptive processing. Eleven healthy right-handed participants were recruited (six males, four females, age range: 24-40 yr). A pneumatic-movement actuator was used to evoke right index-finger flexion-extension movement at 3 Hz for 4 min. The task was repeated both with the wireless-EEG and wired-EEG devices using the same 30-channel EEG cap preparation. CKC was computed between the EEG and finger acceleration. CKC peaked at the movement frequency and its harmonics, being statistically significant (p < 0.05) in 8-10 out of 11 participants. No statistically significant differences (p < 0.05) were found in CKC strength between wireless-EEG (range 0.03-0.22) and wired-EEG (0.02-0.33) systems, that showed a good agreement between the recording systems (3 Hz: r = 0.57, p = 0.071, 6 Hz: r = 0.82, p = 0.003). As expected, CKC peaked in sensors above the left primary sensorimotor cortex contralateral to the moved right index finger. As the wired-EEG device, the tested wireless-EEG system has proven feasible to quantify CKC, and thus can be used as a tool to study proprioception in the human neocortex. Thanks to its portability, the wireless-EEG used in this study has the potential to enable the examination of cortical proprioception in more naturalistic conditions outside the laboratory environment. Clinical Relevance-Our study will contribute to provide innovative technological foundations for future unobtrusive EEG recordings in naturalistic conditions to examine human sensorimotor system.


Subject(s)
Magnetoencephalography , Proprioception , Adult , Amplifiers, Electronic , Electroencephalography , Female , Humans , Male , Movement/physiology , Proprioception/physiology , Young Adult
2.
Article in English | MEDLINE | ID: mdl-34982687

ABSTRACT

Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and High Density-surface EMG (HD-sEMG) signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an head-to-head comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration.


Subject(s)
Brain , Signal Processing, Computer-Assisted , Electroencephalography , Electromyography/methods , Humans , Wireless Technology
3.
Exp Physiol ; 105(6): 1000-1011, 2020 06.
Article in English | MEDLINE | ID: mdl-32271485

ABSTRACT

NEW FINDINGS: What is the central question of this study? Can a 14-week strength-training programme modify intermuscular coherence levels during bipedal standing tasks with eyes open and eyes closed and reduce age-related differences? What is the main finding and its importance? Older adults had more prominent common input over 4-14 Hz with eyes open, but during the eyes-closed task the young adults were able to further enhance their common input at 6-36 Hz. This indicates that young adults are better at modulating common input in different motor tasks. ABSTRACT: Understanding neural control of standing balance is important to identify age-related degeneration and design interventions to maintain function. Here, intermuscular coherence between antagonist muscle pairs around the ankle-joint during standing balance tasks was investigated before and after strength training. Ten young (18-31 years; YOUNG) and nine older adults (66-73 years; OLDER) stood on a force plate for 120 s with eyes open followed by 120 s with eyes closed before and after 14 weeks of strength training. Postural sway was quantified from centre-of-pressure displacement based on 3-D force moments. Electromyography (EMG) was recorded from the gastrocnemius medialis (GM), soleus (SOL) and tibilais anterior (TA) muscles of the right leg. Coherence between rectified EMG pairs (GM-TA, SOL-TA) was calculated for each 120 s epoch separately. Postural sway was lower in YOUNG compared to OLDER in eyes-open (6.8 ± 1.3 vs. 10.3 ± 4.7 mm s-1 , P = 0.028) and eyes-closed (10.9 ± 3.1 vs. 24.4 ± 18.3 mm s-1 , P = 0.032) tasks. For both muscle pairs, OLDER had more prominent common input over 4-14 Hz with eyes open, but when the proprioceptive demand was enhanced in the eyes-closed task the YOUNG were able to further enhance their common input at 6-36 Hz (P < 0.05). Strength training reduced the instability from closing the eyes in OLDER but did not alter coherence. This may highlight a greater functional reserve in YOUNG than in OLDER and possible emerging proprioceptive degeneration in OLDER. However, the findings question the functional role of coherence for balance.


Subject(s)
Muscle, Skeletal/physiology , Postural Balance , Resistance Training , Adolescent , Adult , Aged , Electromyography , Eye , Female , Humans , Male , Young Adult
4.
Neuroscience ; 300: 19-28, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-25967267

ABSTRACT

Human leg muscles are often activated inhomogeneously, e.g. in standing. This may also occur in complex tasks like walking. Thus, bipolar surface electromyography (sEMG) may not accurately represent whole muscle activity. This study used 64-electrode high-density sEMG (HD-sEMG) to examine spatial variability of lateral gastrocnemius (LG) muscle activity during the stance phase of walking, maximal voluntary contractions (MVCs) and maximal M-waves, and determined the effects of different normalization approaches on spatial and inter-participant variability. Plantar flexion MVC, maximal electrically elicited M-waves and walking at self-selected speed were recorded in eight healthy males aged 24-34. sEMG signals were assessed in four ways: unnormalized, and normalized to MVC, M-wave or peak sEMG during the stance phase of walking. During walking, LG activity varied spatially, and was largest in the distal and lateral regions. Spatial variability fluctuated throughout the stance phase. Normalizing walking EMG signals to the peak value during stance reduced spatial variability within LG on average by 70%, and inter-participant variability by 67%. Normalizing to MVC reduced spatial variability by 17% but increased inter-participant variability by 230%. Normalizing to M-wave produced the greatest spatial variability (45% greater than unnormalized EMG) and increased inter-participant variability by 70%. Unnormalized bipolar LG sEMG may provide misleading results about representative muscle activity in walking due to spatial variability. For the peak value and MVC approaches, different electrode locations likely have minor effects on normalized results, whereas electrode location should be carefully considered when normalizing walking sEMG data to maximal M-waves.


Subject(s)
Electromyography/methods , Leg/physiology , Muscle, Skeletal/physiology , Walking/physiology , Adult , Data Interpretation, Statistical , Electric Stimulation , Electromyography/instrumentation , Humans , Male , Reproducibility of Results , Signal Processing, Computer-Assisted , Young Adult
5.
Neuroscience ; 238: 361-70, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23402851

ABSTRACT

Corticokinematic coherence (CKC) refers to coupling between magnetoencephalographic (MEG) brain activity and hand kinematics. For voluntary hand movements, CKC originates mainly from the primary sensorimotor (SM1) cortex. To learn about the relative motor and sensory contributions to CKC, we recorded CKC from 15 healthy subjects during active and passive right index-finger movements. The fingertip was either touching or not touching table, resulting in active-touch, active-no-touch, passive-touch, and passive-no-touch conditions. The kinematics of the index-finger was measured with a 3-axis accelerometer. Beamformer analysis was used to locate brain activations for the movements; somatosensory-evoked fields (SEFs) elicited by pneumatic tactile stimulation of the index finger served as a functional landmark for cutaneous input. All active and passive movements resulted in statistically significant CKC at the movement frequency (F0) and its first harmonic (F1). The main CKC sources at F0 and F1 were in the contralateral SM1 cortex with no spatial differences between conditions, and distinct from the SEF sources. At F1, the coherence was by two thirds stronger for passive than active movements, with no difference between touch vs. no-touch conditions. Our results suggest that the CKC occurring during repetitive finger movements is mainly driven by somatosensory, primarily proprioceptive, afferent input to the SM1 cortex, with negligible effect of cutaneous input.


Subject(s)
Fingers/physiology , Motor Cortex/physiology , Movement/physiology , Somatosensory Cortex/physiology , Adult , Biomechanical Phenomena/physiology , Brain Mapping , Electromyography , Evoked Potentials, Somatosensory/physiology , Female , Humans , Magnetoencephalography , Male
6.
Scand J Med Sci Sports ; 22(3): 418-29, 2012 Jun.
Article in English | MEDLINE | ID: mdl-20973828

ABSTRACT

Morphological evidence suggests that fast-twitch fibers are prone to disruption of their membrane structures by eccentric exercise. However, it is unclear how this is reflected in the discharge rate and action potential propagation of individual motor units, especially at high contraction levels. High-density surface electromyograms were recorded from biceps brachii muscle and decomposed to individual motor unit action potentials at isometric contraction levels between 10% and 75% of maximal voluntary contraction (MVC) before intermittent maximal elbow flexor eccentric exercise, and two hours (2H), two days (2D) and four days (4D) post-exercise. Maximal voluntary force decreased by 21.3±5.6% 2H and by 12.6±11.1% 2D post-exercise. Motor unit discharge rate increased and mean muscle fiber conduction velocity decreased, at the highest isometric contraction levels only (50% and 75% of MVC) at 2H post-exercise. These results indicate that eccentric exercise can disturb the function of motor units active at high contraction levels in the early stages after exercise, which seems to be compensated by the central nervous system with an increase in neural drive during submaximal isometric contractions.


Subject(s)
Elbow/physiology , Exercise/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Adult , Analysis of Variance , Biomechanical Phenomena , Electromyography , Humans , Isometric Contraction/physiology , Male , Muscle Fatigue/physiology , Pain Measurement , Skin Temperature
7.
Scand J Med Sci Sports ; 18(5): 636-42, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18208422

ABSTRACT

Dystrophin associated protein alpha-syntrophin is known to interact with voltage-gated sodium ion channel (NaCh). Dystrophin is known to be sensitive to eccentric muscle actions. For this reason, the function of the NaChs might also be affected. Molecular adaptations of dystrophin, alpha-syntrophin and NaChs were investigated after fatiguing stretch-shortening cycle (SSC) exercise, which consisted of unilateral jumps on a sledge apparatus. Muscle biopsies were taken from the vastus lateralis muscle of eight healthy subjects immediately after (IA) and 2 days after (2D) the exercise to analyze mRNA levels and immunohistochemical staining patterns. SSC exercise resulted in decreased isometric maximal voluntary contraction (IA: -31+/-9%, 2D: -14+/-16%) and a delayed increase of plasma creatine kinase activity (2D: +178+/-211%). Despite muscle soreness (P<0.001), no morphological damage was observed and no changes were found in the mRNA concentrations. However, the relative changes of the mRNA concentrations of alpha-syntrophin and NaChs were highly correlated (r=0.93, P<0.001) 2D after SSC exercise. This consistent pattern of mRNA regulation may imply a functional relationship between these two proteins. In addition, the current experiment emphasises high inter-individual variation in molecular responses to heavy exercise.


Subject(s)
Exercise/physiology , Muscle Fatigue/physiology , Muscle Strength/physiology , Sodium Channels/physiology , Adaptation, Physiological , Adult , Calcium-Binding Proteins/metabolism , Creatinine/blood , Dystrophin/metabolism , Humans , Immunohistochemistry , Male , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Polymerase Chain Reaction , RNA, Messenger/analysis , RNA, Messenger/physiology , Sodium Channels/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...