Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Hum Gene Ther ; 35(7-8): 256-268, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38085235

ABSTRACT

Deficiency of iduronate 2-sulfatase (IDS) causes Mucopolysaccharidosis type II (MPS II), a lysosomal storage disorder characterized by systemic accumulation of glycosaminoglycans (GAGs), leading to a devastating cognitive decline and life-threatening respiratory and cardiac complications. We previously found that hematopoietic stem and progenitor cell-mediated lentiviral gene therapy (HSPC-LVGT) employing tagged IDS with insulin-like growth factor 2 (IGF2) or ApoE2, but not receptor-associated protein minimal peptide (RAP12x2), efficiently prevented brain pathology in a murine model of MPS II. In this study, we report on the effects of HSPC-LVGT on peripheral pathology and we analyzed IDS biodistribution. We found that HSPC-LVGT with all vectors completely corrected GAG accumulation and lysosomal pathology in liver, spleen, kidney, tracheal mucosa, and heart valves. Full correction of tunica media of the great heart vessels was achieved only with IDS.IGF2co gene therapy, while the other vectors provided near complete (IDS.ApoE2co) or no (IDSco and IDS.RAP12x2co) correction. In contrast, tracheal, epiphyseal, and articular cartilage remained largely uncorrected by all vectors tested. These efficacies were closely matched by IDS protein levels following HSPC-LVGT. Our results demonstrate the capability of HSPC-LVGT to correct pathology in tissues of high clinical relevance, including those of the heart and respiratory system, while challenges remain for the correction of cartilage pathology.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Animals , Mice , Mucopolysaccharidosis II/genetics , Iduronic Acid/metabolism , Lentivirus/genetics , Lentivirus/metabolism , Tissue Distribution , Iduronate Sulfatase/genetics , Genetic Therapy/methods , Cartilage/metabolism , Cartilage/pathology
2.
Front Immunol ; 14: 1268620, 2023.
Article in English | MEDLINE | ID: mdl-38022635

ABSTRACT

Introduction: Recombination activating genes (RAG) 1 and 2 defects are the most frequent form of severe combined immunodeficiency (SCID). Patients with residual RAG activity have a spectrum of clinical manifestations ranging from Omenn syndrome to delayed-onset combined immunodeficiency, often associated with granulomas and/or autoimmunity (CID-G/AI). Lentiviral vector (LV) gene therapy (GT) has been proposed as an alternative treatment to the standard hematopoietic stem cell transplant and a clinical trial for RAG1 SCID patients recently started. However, GT in patients with hypomorphic RAG mutations poses additional risks, because of the residual endogenous RAG1 expression and the general state of immune dysregulation and associated inflammation. Methods: In this study, we assessed the efficacy of GT in 2 hypomorphic Rag1 murine models (Rag1F971L/F971L and Rag1R972Q/R972Q), exploiting the same LV used in the clinical trial encoding RAG1 under control of the MND promoter. Results and discussion: Starting 6 weeks after transplant, GT-treated mice showed a decrease in proportion of myeloid cells and a concomitant increase of B, T and total white blood cells. However, counts remained lower than in mice transplanted with WT Lin- cells. At euthanasia, we observed a general redistribution of immune subsets in tissues, with the appearance of mature recirculating B cells in the bone marrow. In the thymus, we demonstrated correction of the block at double negative stage, with a modest improvement in the cortical/medullary ratio. Analysis of antigenspecific IgM and IgG serum levels after in vivo challenge showed an amelioration of antibody responses, suggesting that the partial immune correction could confer a clinical benefit. Notably, no overt signs of autoimmunity were detected, with B-cell activating factor decreasing to normal levels and autoantibodies remaining stable after GT. On the other hand, thymic enlargement was frequently observed, although not due to vector integration and insertional mutagenesis. In conclusion, our work shows that GT could partially alleviate the combined immunodeficiency of hypomorphic RAG1 patients and that extensive efficacy and safety studies with alternative models are required before commencing RAG gene therapy in thesehighly complex patients.


Subject(s)
Immunologic Deficiency Syndromes , Severe Combined Immunodeficiency , Humans , Mice , Animals , Homeodomain Proteins/genetics , Immunologic Deficiency Syndromes/therapy , B-Lymphocytes , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/therapy , Genetic Therapy , Immunoproteins , Mutation
3.
Mol Ther Methods Clin Dev ; 31: 101149, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38033460

ABSTRACT

Mucopolysaccharidosis type II (OMIM 309900) is a lysosomal storage disorder caused by iduronate 2-sulfatase (IDS) deficiency and accumulation of glycosaminoglycans, leading to progressive neurodegeneration. As intravenously infused enzyme replacement therapy cannot cross the blood-brain barrier (BBB), it fails to treat brain pathology, highlighting the unmet medical need to develop alternative therapies. Here, we test modified versions of hematopoietic stem and progenitor cell (HSPC)-mediated lentiviral gene therapy (LVGT) using IDS tagging in combination with the ubiquitous MND promoter to optimize efficacy in brain and to investigate its mechanism of action. We find that IDS tagging with IGF2 or ApoE2, but not RAP12x2, improves correction of brain heparan sulfate and neuroinflammation at clinically relevant vector copy numbers. HSPC-derived cells engrafted in brain show efficiencies highest in perivascular areas, lower in choroid plexus and meninges, and lowest in parenchyma. Importantly, the efficacy of correction was independent of the number of brain-engrafted cells. These results indicate that tagged versions of IDS can outperform untagged IDS in HSPC-LVGT for the correction of brain pathology in MPS II, and they imply both cell-mediated and tag-mediated correction mechanisms, including passage across the BBB and increased uptake, highlighting their potential for clinical translation.

4.
Front Immunol ; 14: 1210818, 2023.
Article in English | MEDLINE | ID: mdl-37497222

ABSTRACT

The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.


Subject(s)
Homeodomain Proteins , Recombinases , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Recombinases/genetics , Gene Rearrangement , Lymphocytes/metabolism , Genes, RAG-1/genetics
5.
Front Cell Dev Biol ; 11: 1163529, 2023.
Article in English | MEDLINE | ID: mdl-37091971

ABSTRACT

Traditionally, flow cytometry has been the preferred method to characterize immune cells at the single-cell level. Flow cytometry is used in immunology mostly to measure the expression of identifying markers on the cell surface, but-with good antibodies-can also be used to assess the expression of intracellular proteins. The advent of single-cell RNA-sequencing has paved the road to study immune development at an unprecedented resolution. Single-cell RNA-sequencing studies have not only allowed us to efficiently chart the make-up of heterogeneous tissues, including their most rare cell populations, it also increasingly contributes to our understanding how different omics modalities interplay at a single cell resolution. Particularly for investigating the immune system, this means that these single-cell techniques can be integrated to combine and correlate RNA and protein data at the single-cell level. While RNA data usually reveals a large heterogeneity of a given population identified solely by a combination of surface protein markers, the integration of different omics modalities at a single cell resolution is expected to greatly contribute to our understanding of the immune system.

6.
Sci Immunol ; 7(77): eade0182, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36367948

ABSTRACT

T cell development in the mouse thymus has been studied extensively, but less is known regarding T cell development in the human thymus. We used a combination of single-cell techniques and functional assays to perform deep immune profiling of human T cell development, focusing on the initial stages of prelineage commitment. We identified three thymus-seeding progenitor populations that also have counterparts in the bone marrow. In addition, we found that the human thymus physiologically supports the development of monocytes, dendritic cells, and NK cells, as well as limited development of B cells. These results are an important step toward monitoring and guiding regenerative therapies in patients after hematopoietic stem cell transplantation.


Subject(s)
Hematopoietic Stem Cells , T-Lymphocytes , Mice , Animals , Humans , Thymus Gland , Cell Differentiation , Killer Cells, Natural
7.
Int J Mol Sci ; 23(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36361533

ABSTRACT

The ex vivo expansion and maintenance of long-term hematopoietic stem cells (LT-HSC) is crucial for stem cell-based gene therapy. A combination of stem cell factor (SCF), thrombopoietin (TPO), FLT3 ligand (FLT3) and interleukin 3 (IL3) cytokines has been commonly used in clinical settings for the expansion of CD34+ from different sources, prior to transplantation. To assess the effect of IL3 on repopulating capacity of cultured CD34+ cells, we employed the commonly used combination of STF, TPO and FILT3 with or without IL3. Expanded cells were transplanted into NSG mice, followed by secondary transplantation. Overall, this study shows that IL3 leads to lower human cell engraftment and repopulating capacity in NSG mice, suggesting a negative effect of IL3 on HSC self-renewal. We, therefore, recommend omitting IL3 from HSC-based gene therapy protocols.


Subject(s)
Hematopoietic Stem Cell Transplantation , Interleukin-3 , Animals , Humans , Mice , Antigens, CD34 , Cells, Cultured , Cytokines/pharmacology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells , Interleukin-3/pharmacology , Stem Cell Factor/pharmacology , Thrombopoietin/pharmacology
8.
Cells ; 11(17)2022 08 28.
Article in English | MEDLINE | ID: mdl-36078085

ABSTRACT

The development of T lymphocytes in the thymus and their stem cell precursors in the bone marrow is controlled by Wnt signaling in strictly regulated, cell-type specific dosages. In this study, we investigated levels of canonical Wnt signaling during hematopoiesis and T cell development within the Axin2-mTurquoise2 reporter. We demonstrate active Wnt signaling in hematopoietic stem cells (HSCs) and early thymocytes, but also in more mature thymic subsets and peripheral T lymphocytes. Thymic epithelial cells displayed particularly high Wnt signaling, suggesting an interesting crosstalk between thymocytes and thymic epithelial cells (TECs). Additionally, reporter mice allowed us to investigate the loss of Axin2 function, demonstrating decreased HSC repopulation upon transplantation and the partial arrest of early thymocyte development in Axin2Tg/Tg full mutant mice. Mechanistically, loss of Axin2 leads to supraphysiological Wnt levels that disrupt HSC differentiation and thymocyte development.


Subject(s)
Axin Protein , Hematopoiesis , Lymphopoiesis , Animals , Axin Protein/genetics , Axin Protein/metabolism , Cell Differentiation , Hematopoiesis/genetics , Hematopoietic Stem Cells , Lymphopoiesis/genetics , Mice , Wnt Signaling Pathway
9.
Cells ; 10(5)2021 04 30.
Article in English | MEDLINE | ID: mdl-33946560

ABSTRACT

In the context of hematopoietic stem cell (HSC) transplantation, conditioning with myelo- and immune-ablative agents is used to eradicate the patient's diseased cells, generate space in the marrow and suppress immune reactions prior to the infusion of donor HSCs. While conditioning is required for effective and long-lasting HSC engraftment, currently used regimens are also associated with short and long-term side effects on extramedullary tissues and even mortality. Particularly in patients with severe combined immunodeficiency (SCID), who are generally less than 1-year old at the time of transplantation and often suffer from existing comorbidities. There is a pressing need for development of alternative, less toxic conditioning regimens. Hence, we here aimed to improve efficacy of currently used myeloablative protocols by combining busulfan with stem-cell niche-directed therapeutic agents (G-CSF or plerixafor) that are approved for clinical use in stem cell mobilization. T, B and myeloid cell recovery was analyzed in humanized NSG mice after different conditioning regimens. Increasing levels of human leukocyte chimerism were observed in a busulfan dose-dependent manner, showing comparable immune recovery as with total body irradiation in CD34-transplanted NSG mice. Notably, a better T cell reconstitution compared to TBI was observed after busulfan conditioning not only in NSG mice but also in SCID mouse models. Direct effects of reducing the stem cell compartment in the bone marrow were observed after G-CSF and plerixafor administration, as well as in combination with low doses of busulfan. Unfortunately, these direct effects on the stem population in the bone marrow were not reflected in increased human chimerism or immune recovery after CD34 transplantation in NSG mice. These results indicate moderate potential of reduced conditioning regimens for clinical use relevant for all allogeneic transplants.


Subject(s)
Busulfan/pharmacology , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/drug effects , Myeloablative Agonists/pharmacology , Transplantation Conditioning/methods , Animals , Benzylamines/pharmacology , Cells, Cultured , Cyclams/pharmacology , Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cells/immunology , Humans , Immune Reconstitution , Mice , Mice, Inbred BALB C
10.
Cells ; 11(1)2021 12 30.
Article in English | MEDLINE | ID: mdl-35011669

ABSTRACT

The intrinsic capacity of human hematopoietic stem cells (hHSCs) to reconstitute myeloid and lymphoid lineages combined with their self-renewal capacity hold enormous promises for gene therapy as a viable treatment option for a number of immune-mediated diseases, most prominently for inborn errors of immunity (IEI). The current development of such therapies relies on disease models, both in vitro and in vivo, which allow the study of human pathophysiology in great detail. Here, we discuss the current challenges with regards to developmental origin, heterogeneity and the subsequent implications for disease modeling. We review models based on induced pluripotent stem cell technology and those relaying on use of adult hHSCs. We critically review the advantages and limitations of current models for IEI both in vitro and in vivo. We conclude that existing and future stem cell-based models are necessary tools for developing next generation therapies for IEI.


Subject(s)
Immune System Diseases/genetics , Metabolism, Inborn Errors/immunology , Stem Cells/metabolism , Humans
11.
Sci Adv ; 6(31): eaaw7313, 2020 07.
Article in English | MEDLINE | ID: mdl-32789164

ABSTRACT

T cell factor 1 (Tcf1) is the first T cell-specific protein induced by Notch signaling in the thymus, leading to the activation of two major target genes, Gata3 and Bcl11b. Tcf1 deficiency results in partial arrests in T cell development, high apoptosis, and increased development of B and myeloid cells. Phenotypically, seemingly fully T cell-committed thymocytes with Tcf1 deficiency have promiscuous gene expression and an altered epigenetic profile and can dedifferentiate into more immature thymocytes and non-T cells. Restoring Bcl11b expression in Tcf1-deficient cells rescues T cell development but does not strongly suppress the development of non-T cells; in contrast, expressing Gata3 suppresses their development but does not rescue T cell development. Thus, T cell development is controlled by a minimal transcription factor network involving Notch signaling, Tcf1, and the subsequent division of labor between Bcl11b and Gata3, thereby ensuring a properly regulated T cell gene expression program.

12.
Pharmaceutics ; 12(6)2020 Jun 13.
Article in English | MEDLINE | ID: mdl-32545727

ABSTRACT

Recent clinical trials using patient's own corrected hematopoietic stem cells (HSCs), such as for primary immunodeficiencies (Adenosine deaminase (ADA) deficiency, X-linked Severe Combined Immunodeficiency (SCID), X-linked chronic granulomatous disease (CGD), Wiskott-Aldrich Syndrome (WAS)), have yielded promising results in the clinic; endorsing gene therapy to become standard therapy for a number of diseases. However, the journey to achieve such a successful therapy is not easy, and several challenges have to be overcome. In this review, we will address several different challenges in the development of gene therapy for immune deficiencies using our own experience with Recombinase-activating gene 1 (RAG1) SCID as an example. We will discuss product development (targeting of the therapeutic cells and choice of a suitable vector and delivery method), the proof-of-concept (in vitro and in vivo efficacy, toxicology, and safety), and the final release steps to the clinic (scaling up, good manufacturing practice (GMP) procedures/protocols and regulatory hurdles).

13.
Mol Ther Methods Clin Dev ; 17: 666-682, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32322605

ABSTRACT

Recombinase-activating gene-1 (RAG1)-deficient severe combined immunodeficiency (SCID) patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. Gene therapy is an alternative for those RAG1-SCID patients who lack a suitable bone marrow donor. We designed lentiviral vectors with different internal promoters driving codon-optimized RAG1 to ensure optimal expression. We used Rag1 -/- mice as a preclinical model for RAG1-SCID to assess the efficacy of the various vectors. We observed that B and T cell reconstitution directly correlated with RAG1 expression. Mice with low RAG1 expression showed poor immune reconstitution; however, higher expression resulted in phenotypic and functional lymphocyte reconstitution comparable to mice receiving wild-type stem cells. No signs of genotoxicity were found. Additionally, RAG1-SCID patient CD34+ cells transduced with our clinical RAG1 vector and transplanted into NSG mice led to improved human B and T cell development. Considering this efficacy outcome, together with favorable safety data, these results substantiate the need for a clinical trial for RAG1-SCID.

14.
Front Cell Dev Biol ; 8: 615131, 2020.
Article in English | MEDLINE | ID: mdl-33614624

ABSTRACT

Wnt proteins comprise a large family of highly conserved glycoproteins known for their role in development, cell fate specification, tissue regeneration, and tissue homeostasis. Aberrant Wnt signaling is linked to developmental defects, malignant transformation, and carcinogenesis as well as to inflammation. Mounting evidence from recent research suggests that a dysregulated activation of Wnt signaling is involved in the pathogenesis of chronic inflammatory diseases, such as neuroinflammation, cancer-mediated inflammation, and metabolic inflammatory diseases. Recent findings highlight the role of Wnt in the modulation of inflammatory cytokine production, such as NF-kB signaling and in innate defense mechanisms as well as in the bridging of innate and adaptive immunity. This sparked the development of novel therapeutic treatments against inflammatory diseases based on Wnt modulation. Here, we summarize the role and function of the Wnt pathway in inflammatory diseases and focus on Wnt signaling as underlying master regulator of inflammation that can be therapeutically targeted.

15.
Front Immunol ; 11: 607991, 2020.
Article in English | MEDLINE | ID: mdl-33584681

ABSTRACT

Many preclinical and clinical studies of hematopoietic stem cell-based gene therapy (GT) are based on the use of lentiviruses as the vector of choice. Assessment of the vector titer and transduction efficiency of the cell product is critical for these studies. Efficacy and safety of the modified cell product are commonly determined by assessing the vector copy number (VCN) using qPCR. However, this optimized and well-established method in the GT field is based on bulk population averages, which can lead to misinterpretation of the actual VCN per transduced cell. Therefore, we introduce here a single cell-based method that allows to unmask cellular heterogeneity in the GT product, even when antibodies are not available. We use Invitrogen's flow cytometry-based PrimeFlow™ RNA Assay with customized probes to determine transduction efficiency of transgenes of interest, promoter strength, and the cellular heterogeneity of murine and human stem cells. The assay has good specificity and sensitivity to detect the transgenes, as shown by the high correlations between PrimeFlow™-positive cells and the VCN. Differences in promoter strengths can readily be detected by differences in percentages and fluorescence intensity. Hence, we show a customizable method that allows to determine the number of transduced cells and the actual VCN per transduced cell in a GT product. The assay is suitable for all therapeutic genes for which antibodies are not available or too cumbersome for routine flow cytometry. The method also allows co-staining of surface markers to analyze differential transduction efficiencies in subpopulations of target cells.


Subject(s)
Branched DNA Signal Amplification Assay , DNA/biosynthesis , Flow Cytometry , Gene Expression Regulation , Genetic Therapy , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Single-Cell Analysis , Animals , Cells, Cultured , Genetic Vectors , Humans , Mice , Transduction, Genetic , Transgenes
16.
Front Genome Ed ; 2: 615619, 2020.
Article in English | MEDLINE | ID: mdl-34713237

ABSTRACT

Many gene editing techniques are developed and tested, yet, most of these are optimized for transformed cell lines, which differ from their primary cell counterparts in terms of transfectability, cell death propensity, differentiation capability, and chromatin accessibility to gene editing tools. Researchers are working to overcome the challenges associated with gene editing of primary cells, namely, at the level of improving the gene editing tool components, e.g., the use of modified single guide RNAs, more efficient delivery of Cas9 and RNA in the ribonucleoprotein of these cells. Despite these efforts, the low efficiency of proper gene editing in true primary cells is an obstacle that needs to be overcome in order to generate sufficiently high numbers of corrected cells for therapeutic use. In addition, many of the therapeutic candidate genes for gene editing are expressed in more mature blood cell lineages but not in the hematopoietic stem cells (HSCs), where they are tightly packed in heterochromatin, making them less accessible to gene editing enzymes. Bringing HSCs in proliferation is sometimes seen as a solution to overcome lack of chromatin access, but the induction of proliferation in HSCs often is associated with loss of stemness. The documented occurrences of off-target effects and, importantly, on-target side effects also raise important safety issues. In conclusion, many obstacles still remain to be overcome before gene editing in HSCs for gene correction purposes can be applied clinically. In this review, in a perspective way, we will discuss the challenges of researching and developing a novel genetic engineering therapy for monogenic blood and immune system disorders.

17.
Bioinformatics ; 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31665245

ABSTRACT

SUMMARY: An effective immune system is characterized by a diverse immune repertoire. There is a strong demand for accurate and quantitative methods to assess the diversity of the immune repertoire for various (pre-)clinical applications, including the diagnosis and prognosis of primary immune deficiencies, or to assess the response to therapy. Current strategies for immune diversity assessment generally comprise the visual inspection of the length distribution of rearranged T- and B-cell receptors. Visual inspections, however, are prone to subjective assessments and thus lead to biases. Here, we introduce ImSpectR, a unified approach to quantify immunodiversity using either spectratype, repertoire sequencing or single cell RNA sequencing data. ImSpectR scores various types of deviations from the expected length distribution and integrates these into one measure, allowing for robust quantitative comparisons of immune diversity across individuals or conditions. AVAILABILITY: R-package is available for download on GitHub at https://github.com/martijn-cordes/ImSpectR. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

19.
Cells ; 8(2)2019 02 18.
Article in English | MEDLINE | ID: mdl-30781676

ABSTRACT

Expansion of hematopoietic stem cells (HSCs) for therapeutic purposes has been a "holy grail" in the field for many years. Ex vivo expansion of HSCs can help to overcome material shortage for transplantation purposes and genetic modification protocols. In this review, we summarize improved understanding in blood development, the effect of niche and conservative signaling pathways on HSCs in mice and humans, and also advances in ex vivo culturing protocols of human HSCs with cytokines or small molecule compounds. Different expansion protocols have been tested in clinical trials. However, an optimal condition for ex vivo expansion of human HSCs still has not been found yet. Translating and implementing new findings from basic research (for instance by using genetic modification of human HSCs) into clinical protocols is crucial to improve ex vivo expansion and eventually boost stem cell gene therapy.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Stem Cell Niche , Animals , Cell Lineage , Cell Self Renewal , Humans , Wnt Signaling Pathway
20.
J Exp Med ; 215(7): 1929-1945, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29941549

ABSTRACT

A substantial subset of patients with T cell acute lymphoblastic leukemia (T-ALL) develops resistance to steroids and succumbs to their disease. JDP2 encodes a bZIP protein that has been implicated as a T-ALL oncogene from insertional mutagenesis studies in mice, but its role in human T-ALL pathogenesis has remained obscure. Here we show that JDP2 is aberrantly expressed in a subset of T-ALL patients and is associated with poor survival. JDP2 is required for T-ALL cell survival, as its depletion by short hairpin RNA knockdown leads to apoptosis. Mechanistically, JDP2 regulates prosurvival signaling through direct transcriptional regulation of MCL1. Furthermore, JDP2 is one of few oncogenes capable of initiating T-ALL in transgenic zebrafish. Notably, thymocytes from rag2:jdp2 transgenic zebrafish express high levels of mcl1 and demonstrate resistance to steroids in vivo. These studies establish JDP2 as a novel oncogene in high-risk T-ALL and implicate overexpression of MCL1 as a mechanism of steroid resistance in JDP2-overexpressing cells.


Subject(s)
Oncogenes , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Repressor Proteins/genetics , Zebrafish Proteins/genetics , Animals , Apoptosis/drug effects , Base Sequence , Cell Proliferation/drug effects , Cell Survival/drug effects , Child, Preschool , Dexamethasone/pharmacology , Disease Models, Animal , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Leukemic/drug effects , Glucocorticoids/pharmacology , Humans , Infant , Mice , Mutagenesis, Insertional/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasm Transplantation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Binding/drug effects , Proto-Oncogene Proteins c-myc/metabolism , Repressor Proteins/metabolism , Response Elements/genetics , Thymocytes/drug effects , Thymocytes/metabolism , Treatment Outcome , Zebrafish , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...