Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Robot AI ; 11: 1325296, 2024.
Article in English | MEDLINE | ID: mdl-38533525

ABSTRACT

Introduction: It is crucial to identify neurodevelopmental disorders in infants early on for timely intervention to improve their long-term outcomes. Combining natural play with quantitative measurements of developmental milestones can be an effective way to swiftly and efficiently detect infants who are at risk of neurodevelopmental delays. Clinical studies have established differences in toy interaction behaviors between full-term infants and pre-term infants who are at risk for cerebral palsy and other developmental disorders. Methods: The proposed toy aims to improve the quantitative assessment of infant-toy interactions and fully automate the process of detecting those infants at risk of developing motor delays. This paper describes the design and development of a toy that uniquely utilizes a collection of soft lossy force sensors which are developed using optical fibers to gather play interaction data from infants laying supine in a gym. An example interaction database was created by having 15 adults complete a total of 2480 interactions with the toy consisting of 620 touches, 620 punches-"kick substitute," 620 weak grasps and 620 strong grasps. Results: The data is analyzed for patterns of interaction with the toy face using a machine learning model developed to classify the four interactions present in the database. Results indicate that the configuration of 6 soft force sensors on the face created unique activation patterns. Discussion: The machine learning algorithm was able to identify the distinct action types from the data, suggesting the potential usability of the toy. Next steps involve sensorizing the entire toy and testing with infants.

2.
Adv Mater ; 35(24): e2211242, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36933269

ABSTRACT

Repairing fractured metals to extend their useful lifetimes advances sustainability and mitigates carbon emissions from metal mining and processing. While high-temperature techniques are being used to repair metals, the increasing ubiquity of digital manufacturing and "unweldable" alloys, as well as the integration of metals with polymers and electronics, call for radically different repair approaches. Herein, a framework for effective room-temperature repair of fractured metals using an area-selective nickel electrodeposition process refered to as electrochemical healing is presented. Based on a model that links geometric, mechanical, and electrochemical parameters to the recovery of tensile strength, this framework enables 100% recovery of tensile strength in nickel, low-carbon steel, two "unweldable" aluminum alloys, and a 3D-printed difficult-to-weld shellular structure using a single common electrolyte. Through a distinct energy-dissipation mechanism, this framework also enables up to 136% recovery of toughness in an aluminum alloy. To facilitate practical adoption, this work reveals scaling laws for the energetic, financial, and time costs of healing, and demonstrates the restoration of a functional level of strength in a fractured standard steel wrench. Empowered with this framework, room-temperature electrochemical healing can open exciting possibilities for the effective, scalable repair of metals in diverse applications.

3.
ACS Appl Mater Interfaces ; 15(5): 6807-6816, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36700920

ABSTRACT

Small-scale, primary electrochemical energy storage devices ("microbatteries") are critical power sources for microelectromechanical system (MEMS)-based sensors and actuators. However, the achievable volumetric and gravimetric energy densities of microbatteries are typically insufficient for intermediate-term applications of MEMS-enabled distributed internet-connected devices. Further, in the increasing subset of Internet of Things (IoT) nodes, where actuation is desired, the peak power density of the microbattery must be simultaneously considered. Metal-air approaches to achieving microbatteries are attractive, as the anode and cathode are amenable to miniaturization; however, further improvements in energy density can be obtained by minimizing the electrolyte volume. To investigate these potential improvements, this work studied very lean hydrogel electrolytes based on poly(vinyl alcohol) (PVA). Integration of high potassium hydroxide (KOH) loading into the PVA hydrogel improved electrolyte performance. The addition of potassium carbonate (K2CO3) to the KOH-PVA gel decreased the carbonation consumption rate of KOH in the gel electrolyte by 23.8% compared to PVA-KOH gel alone. To assess gel performance, a microbattery was formed from a zinc (Zn) anode layer, a gel electrolyte layer, and a carbon-platinum (C-Pt) air cathode layer. Volumetric energy densities of approximately 1400 Wh L-1 and areal peak power densities of 139 mW cm-2 were achieved with a PVA-KOH-K2CO3 electrolyte. Further structural optimization, including using multilayer gel electrolytes and thinning the air cathode, resulted in volumetric and gravimetric energy densities of 1576 Wh L-1 and 420 Wh kg-1, respectively. The batteries described in this work are manufactured in an open environment and fabricated using a straightforward layer-by-layer method, enabling the potential for high fabrication throughput in a MEMS-compatible fashion.

4.
Sci Robot ; 7(72): eabo2179, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36449630

ABSTRACT

Materials with electroprogrammable stiffness and adhesion can enhance the performance of robotic systems, but achieving large changes in stiffness and adhesive forces in real time is an ongoing challenge. Electroadhesive clutches can rapidly adhere high stiffness elements, although their low force capacities and high activation voltages have limited their applications. A major challenge in realizing stronger electroadhesive clutches is that current parallel plate models poorly predict clutch force capacity and cannot be used to design better devices. Here, we use a fracture mechanics framework to understand the relationship between clutch design and force capacity. We demonstrate and verify a mechanics-based model that predicts clutch performance across multiple geometries and applied voltages. On the basis of this approach, we build a clutch with 63 times the force capacity per unit electrostatic force of state-of-the-art electroadhesive clutches. Last, we demonstrate the ability of our electroadhesives to increase the load capacity of a soft, pneumatic finger by a factor of 27 times compared with a finger without an electroadhesive.


Subject(s)
Fractures, Bone , Robotics , Humans , Bone Plates , Fingers , Static Electricity
5.
Adv Mater ; 33(35): e2101760, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34278621

ABSTRACT

Billions of internet connected devices used for medicine, wearables, and robotics require microbattery power sources, but the conflicting scaling laws between electronics and energy storage have led to inadequate power sources that severely limit the performance of these physically small devices. Reported here is a new design paradigm for primary microbatteries that drastically improves energy and power density by eliminating the vast majority of the packaging and through the use of high-energy-density anode and cathode materials. These light (50-80 mg) and small (20-40 µL) microbatteries are enabled though the electroplating of 130 µm-thick 94% dense additive-free and crystallographically oriented LiCoO2 onto thin metal foils, which also act as the encapsulation layer. These devices have 430 Wh kg-1 and 1050 Wh L-1 energy densities, 4 times the energy density of previous similarly sized microbatteries, opening up the potential to power otherwise unpowerable microdevices.

6.
Adv Mater ; 33(35): e2007952, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34245062

ABSTRACT

Stiffness is a mechanical property of vital importance to any material system and is typically considered a static quantity. Recent work, however, has shown that novel materials with programmable stiffness can enhance the performance and simplify the design of engineered systems, such as morphing wings, robotic grippers, and wearable exoskeletons. For many of these applications, the ability to program stiffness with electrical activation is advantageous because of the natural compatibility with electrical sensing, control, and power networks ubiquitous in autonomous machines and robots. The numerous applications for materials with electrically driven stiffness modulation has driven a rapid increase in the number of publications in this field. Here, a comprehensive review of the available materials that realize electroprogrammable stiffness is provided, showing that all current approaches can be categorized as using electrostatics or electrically activated phase changes, and summarizing the advantages, limitations, and applications of these materials. Finally, a perspective identifies state-of-the-art trends and an outlook of future opportunities for the development and use of materials with electroprogrammable stiffness.

7.
Nat Mater ; 20(11): 1512-1518, 2021 11.
Article in English | MEDLINE | ID: mdl-34140654

ABSTRACT

Nanolattices exhibit attractive mechanical, energy conversion and optical properties, but it is challenging to fabricate large nanolattices while maintaining the dense regular nanometre features that enable their properties. Here we report a crack-free self-assembly approach for fabricating centimetre-scale nickel nanolattices with much larger crack-free areas than prior self-assembled nanolattices and many more unit cells than three-dimensionally printed nanolattices. These nickel nanolattices have a feature size of 100 nm, a grain size of 30 nm and a tensile strength of 260 MPa, which approaches the theoretical strength limit for porous nickel. The self-assembly method and porous metal mechanics reported in this work may advance the fabrication and applications of high-strength multifunctional porous materials.


Subject(s)
Tensile Strength , Materials Testing , Porosity
8.
ACS Appl Mater Interfaces ; 13(11): 13097-13105, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33715346

ABSTRACT

The performance of metal-air batteries and fuel cells depends on the speed and efficiency of electrochemical oxygen reduction reactions at the cathode, which can be improved by engineering the atomic arrangement of cathode catalysts. It is, however, difficult to improve upon the performance of platinum nanoparticles in alkaline electrolytes with low-loading catalysts that can be manufactured at scale. Here, the authors synthesized nanoporous gold catalysts with increased (100) surface facets using electrochemical dealloying in sodium citrate surfactant electrolytes. These modified nanoporous gold catalysts achieved an 8% higher operating voltage and 30% greater power density in aluminum-air batteries over traditionally prepared nanoporous gold, and their performance was superior to commercial platinum nanoparticle electrodes at a 10 times lower mass loading. The authors used rotation disc electrode studies, backscattering of electrons, and underpotential deposition to show that the increased (100) facets improved the catalytic activity of citrate dealloyed nanoporous gold compared to conventional nanoporous gold. The citrate dealloyed samples also had the highest stability and least concentration of steps and kinks. The developed synthesis and characterization techniques will enable the design and synthesis of metal nanostructured catalysts with controlled facets for low-cost and mass production of metal-air battery cathodes.

9.
J Appl Crystallogr ; 53(Pt 6): 1444-1451, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33304222

ABSTRACT

Ptychographic X-ray computed tomography is a quantitative three-dimensional imaging technique offered to users of multiple synchrotron radiation sources. Its dependence on the coherent fraction of the available X-ray beam makes it perfectly suited to diffraction-limited storage rings. Although MAX IV is the first, and so far only, operating fourth-generation synchrotron light source, none of its experimental stations is currently set up to offer this technique to its users. The first ptychographic X-ray computed tomography experiment has therefore been performed on the NanoMAX beamline. From the results, information was gained about the current limitations of the experimental setup and where attention should be focused for improvement. The extracted parameters in terms of scanning speed, size of the imaged volume and achieved resolutions should provide a baseline for future users designing nano-tomography experiments on the NanoMAX beamline.

10.
Langmuir ; 36(26): 7315-7324, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32501700

ABSTRACT

Metallic inverse opals are porous materials with enhanced mechanical, chemical, thermal, and photonic properties used to improve the performance of many technologies, such as battery electrodes, photonic devices, and heat exchangers. Cracking in the drying opal templates used to fabricate inverse opals, however, is a major hindrance to the use of these materials for practical and fundamental studies. In this work, we conduct desiccation experiments on polystyrene particle opals self-assembled on indium-tin oxide coated substrates to study their fracture mechanisms, which we describe using an energy-conservation fracture model. The model incorporates film yielding, particle order, and interfacial friction to explain several experimental observations, including thickness-dependent crack spacings, cracking stresses, and order-dependent crack behavior. Guided by this model, we are the first to fabricate 120 µm thick free-standing metallic inverse opals, which are 4 times thicker than previously reported non-free-standing metallic inverse opals. Moreover, by controlling cracks, we achieve a crack-free single-crystal domain up to 1.35 mm2, the largest ever reported in metallic inverse opals. This work improves our understanding of fracture mechanics in drying particle films, provides guidelines to reduce crack formation in opal templates, and enables the fabrication of free-standing large-area single-crystal inverse opals.

11.
Nature ; 571(7763): 51-57, 2019 07.
Article in English | MEDLINE | ID: mdl-31217583

ABSTRACT

Modern robots lack the multifunctional interconnected systems found in living organisms and are consequently unable to reproduce their efficiency and autonomy. Energy-storage systems are among the most crucial limitations to robot autonomy, but their size, weight, material and design constraints can be re-examined in the context of multifunctional, bio-inspired applications. Here we present a synthetic energy-dense circulatory system embedded in an untethered, aquatic soft robot. Modelled after redox flow batteries, this synthetic vascular system combines the functions of hydraulic force transmission, actuation and energy storage into a single integrated design that geometrically increases the energy density of the robot to enable operation for long durations (up to 36 hours). The fabrication techniques and flexible materials used in its construction enable the vascular system to be created with complex form factors that continuously deform with the robot's movement. This use of electrochemical energy storage in hydraulic fluids could facilitate increased energy density, autonomy, efficiency and multifunctionality in future robot designs.

12.
Sci Rep ; 9(1): 719, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30679615

ABSTRACT

This paper describes a nickel-based cellular material, which has the strength of titanium and the density of water. The material's strength arises from size-dependent strengthening of load-bearing nickel struts whose diameter is as small as 17 nm and whose 8 GPa yield strength exceeds that of bulk nickel by up to 4X. The mechanical properties of this material can be controlled by varying the nanometer-scale geometry, with strength varying over the range 90-880 MPa, modulus varying over the range 14-116 GPa, and density varying over the range 880-14500 kg/m3. We refer to this material as a "metallic wood," because it has the high mechanical strength and chemical stability of metal, as well as a density close to that of natural materials such as wood.

13.
Biomimetics (Basel) ; 3(3)2018 Sep 04.
Article in English | MEDLINE | ID: mdl-31105246

ABSTRACT

Natural organisms use a combination of contracting muscles and inextensible fibers to transform into controllable shapes, camouflage into their surrounding environment, and catch prey. Replicating these capabilities with engineered materials is challenging because of the difficulty in manufacturing and controlling soft material actuators with embedded fibers. In addition, while linear and bending motions are common in soft actuators, rotary motions require three-dimensional fiber wrapping or multiple bending or linear elements working in coordination that are challenging to design and fabricate. In this work, an automatic embroidery machine patterned Kevlar™ fibers and stretchable optical fibers into inflatable silicone membranes to control their inflated shape and enable sensing. This embroidery-based fabrication technique is simple, low cost, and allows for precise and custom patterning of fibers in elastomers. Using this technique, we developed inflatable elastomeric actuators embedded with a planar spiral pattern of high-strength Kevlar™ fibers that inflate into radially symmetric shapes and achieve nearly 180° angular rotation and 10 cm linear displacement.

14.
Proc Natl Acad Sci U S A ; 112(21): 6573-8, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25964360

ABSTRACT

As sensors, wireless communication devices, personal health monitoring systems, and autonomous microelectromechanical systems (MEMS) become distributed and smaller, there is an increasing demand for miniaturized integrated power sources. Although thin-film batteries are well-suited for on-chip integration, their energy and power per unit area are limited. Three-dimensional electrode designs have potential to offer much greater power and energy per unit area; however, efforts to date to realize 3D microbatteries have led to prototypes with solid electrodes (and therefore low power) or mesostructured electrodes not compatible with manufacturing or on-chip integration. Here, we demonstrate an on-chip compatible method to fabricate high energy density (6.5 µWh cm(-2)⋅µm(-1)) 3D mesostructured Li-ion microbatteries based on LiMnO2 cathodes, and NiSn anodes that possess supercapacitor-like power (3,600 µW cm(-2)⋅µm(-1) peak). The mesostructured electrodes are fabricated by combining 3D holographic lithography with conventional photolithography, enabling deterministic control of both the internal electrode mesostructure and the spatial distribution of the electrodes on the substrate. The resultant full cells exhibit impressive performances, for example a conventional light-emitting diode (LED) is driven with a 500-µA peak current (600-C discharge) from a 10-µm-thick microbattery with an area of 4 mm(2) for 200 cycles with only 12% capacity fade. A combined experimental and modeling study where the structural parameters of the battery are modulated illustrates the unique design flexibility enabled by 3D holographic lithography and provides guidance for optimization for a given application.

15.
Adv Mater ; 26(41): 7096-101, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25195592

ABSTRACT

A generalized hydrothermal strategy for fabricating three-dimensional (3D) battery electrodes is presented. The hydrothermal growth deposits electrochemically active nanomaterials uniformly throughout the complex 3D mesostructure of the scaffold. Ni inverse opals coated with SnO2 nanoparticles or Co3O4 nanoplatelets, and SiO2 inverse opals coated with Fe3O4 are fabricated, all of which show attractive properties including good capacity retention and C-rate performances.

16.
Nat Commun ; 4: 1732, 2013.
Article in English | MEDLINE | ID: mdl-23591899

ABSTRACT

High-performance miniature power sources could enable new microelectronic systems. Here we report lithium ion microbatteries having power densities up to 7.4 mW cm(-2) µm(-1), which equals or exceeds that of the best supercapacitors, and which is 2,000 times higher than that of other microbatteries. Our key insight is that the battery microarchitecture can concurrently optimize ion and electron transport for high-power delivery, realized here as a three-dimensional bicontinuous interdigitated microelectrodes. The battery microarchitecture affords trade-offs between power and energy density that result in a high-performance power source, and which is scalable to larger areas.

17.
Biomed Microdevices ; 15(2): 311-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23247581

ABSTRACT

Hydrogels have gained wide usage in a range of biomedical applications because of their biocompatibility and the ability to finely tune their properties, including viscoelasticity. The use of hydrogels on the microscale is increasingly important for the development of drug delivery techniques and cellular microenvironments, though the ability to accurately characterize their micromechanical properties is limited. Here we demonstrate the use of microelectromechanical systems (MEMS) resonant sensors to estimate the properties of poly(ethylene glycol) diacrylate (PEGDA) microstructures over a range of concentrations. These microstructures are integrated on the sensors by deposition using electrohydrodynamic jet printing. Estimated properties agree well with independent measurements made using indentation with atomic force microscopy.


Subject(s)
Hardness Tests/instrumentation , Hydrogels/chemistry , Materials Testing/instrumentation , Micro-Electrical-Mechanical Systems/instrumentation , Transducers , Elastic Modulus , Equipment Design , Equipment Failure Analysis , Hardness , Hydrogels/analysis , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...