Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37373170

ABSTRACT

This work is related to the environmental toxicology risk assessment and evaluation of the possible transformation of carbon-based nanomaterials (CNMs) after contact with marine microalgae. The materials used in the study represent common and widely applied multi-walled carbon nanotubes (CNTs), fullerene (C60), graphene (Gr), and graphene oxide (GrO). The toxicity was evaluated as growth rate inhibition, esterase activity, membrane potential, and reactive oxygen species generation changes. The measurement was performed with flow cytometry after 3, 24, 96 h, and 7 days. The biotransformation of nanomaterials was evaluated after 7 days of microalgae cultivation with CNMs by FTIR and Raman spectroscopy. The calculated toxic level (EC50 in mg/L, 96 h) of used CNMs reduced in the following order: CNTs (18.98) > GrO (76.77) > Gr (159.40) > C60 (414.0). Oxidative stress and membrane depolarization were the main toxic action of CNTs and GrO. At the same time, Gr and C60 decreased the toxic action with time and had no negative impact on microalgae after 7 days of exposure even at the concentration of 125 mg/L. Moreover, C60 and Gr after 7 days of contact with microalgae cells obtained structural deformations.


Subject(s)
Fullerenes , Microalgae , Nanostructures , Nanotubes, Carbon , Nanotubes, Carbon/toxicity , Fullerenes/toxicity , Nanostructures/toxicity , Biotransformation
2.
Toxics ; 11(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37368591

ABSTRACT

The growing production and application of carbon-based nanomaterials (CNMs) represent possible risks for aquatic systems. However, the variety of CNMs with different physical and chemical properties and different morphology complicate the understanding of their potential toxicity. This paper aims to evaluate and compare the toxic impact of the four most common CNMs, namely multiwalled carbon nanotubes (CNTs), fullerene (C60), graphene (Gr), and graphene oxide (GrO) on the marine microalgae Porphyridium purpureum. The microalgae cells were exposed to the CNMs for 96 h and measured by flow cytometry. Based on the obtained results, we determined no observed effect level (NOEL), and calculated EC10 and EC50 concentrations for growth rate inhibition, esterase activity, membrane potential, and reactive oxygen species (ROS) generation changes for each tested CNM. According to the sensitivity (growth rate inhibition) of P. purpureum, the used CNMs can be listed in the following order (EC50 in mg/L, 96 h): CNTs (2.08) > GrO (23.37) > Gr (94.88) > C60 (>131.0). The toxicity of CNTs was significantly higher than the toxic effect of the other used CNMs, and only this sample caused an increase in ROS generation in microalgae cells. This effect was apparently caused by the high affinity between particles and microalgae associated with the presence of exopolysaccharide coverage on P. purpureum cells.

3.
Environ Pollut ; 331(Pt 1): 121923, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37257811

ABSTRACT

This study evaluated and compared the individual and combined toxicity of AgNPs, TiO2NPs, and SiO2NPs to life cycle of A. salina. To this end, both stability and toxicity of AgNPs were determined in the presence of TiO2NPs and SiO2NPs. The colloidal stability of AgNPs decreased in the presence of the other two NPs, especially SiO2NPs. AgNPs displayed acute toxicity to A. salina, whereas SiO2NPs and TiO2NPs chronically induced toxicity in a concentration- and time-dependent manner during 28-day exposure. The experimental NPs significantly decreased the weight and length of A. salina and induced reproductive toxicity through perturbation in first brood timespan, sexual maturity, egg development time, egg pouch area, offspring quality, and fecundity. Exposure to AgNPs shifted the mode of reproduction in brine shrimp from ovoviviparity to oviparity, and also co-presence of AgNPs with SiO2NPs or TiO2NPs caused infertility. Generally, their individual toxicity was in order of AgNPs > TiO2NPs > SiO2NPs, and binary exposure to AgNPs-SiO2NPs appear to be more threatening than AgNPs-TiO2NPs to A. salina. Together, this study highlights that these nanoparticles could disrupt reproductive health of A. salina and lead to alterations in population dynamics and aquatic ecosystem balance.


Subject(s)
Metal Nanoparticles , Water Pollutants, Chemical , Animals , Metal Nanoparticles/toxicity , Artemia , Silver/toxicity , Ecosystem , Silicon Dioxide/toxicity , Water Pollutants, Chemical/toxicity , Titanium/toxicity , Saline Waters , Genitalia
4.
Toxics ; 11(2)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36850981

ABSTRACT

Underwater wet welding is commonly used in joining pipelines and in underwater construction. Harmful and hazardous compounds are added to many flux-cored wires for underwater welding and cutting, and can have a negative impact on marine life. The specific objective of this study was to evaluate the aquatic toxicity of two suspension samples obtained using welding electrode and flux-cored wire in marine microalgae Attheya ussuriensis and Porphyridium purpureum. Growth rate inhibition, cell size, and biochemical changes in microalgae were evaluated by flow cytometry. The results of the bioassay demonstrated that the suspension obtained after welding with electrode had an acute toxic impact on diatomic microalgae A. ussuriensis, and both tested suspensions revealed chronic toxicity in this microalga with a 40% growth rate inhibition after exposure to 40-50% of prepared suspensions for 7 days. Red algae P. purpureum revealed tolerance to both suspensions caused by exopolysaccharide covering, which prevents the toxic impact of metal cations such as Al, Ti, Mn, Fe, and Zn, which are considered the main toxic components of underwater welding emissions.

5.
Nanomaterials (Basel) ; 12(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36500771

ABSTRACT

Carbon-based nanomaterials (CNMs) have attracted a growing interest over the last decades. They have become a material commonly used in industry, consumer products, water purification, and medicine. Despite this, the safety and toxic properties of different types of CNMs are still debatable. Multiple studies in recent years highlight the toxicity of CNMs in relation to aquatic organisms, including bacteria, microalgae, bivalves, sea urchins, and other species. However, the aspects that have significant influence on the toxic properties of CNMs in the aquatic environment are often not considered in research works and require further study. In this work, we summarized the current knowledge of colloidal behavior, transformation, and biodegradation of different types of CNMs, including graphene and graphene-related materials, carbon nanotubes, fullerenes, and carbon quantum dots. The other part of this work represents an overview of the known mechanisms of CNMs' biodegradation and discusses current research works relating to the biodegradation of CNMs in aquatic species. The knowledge about the biodegradation of nanomaterials will facilitate the development of the principals of "biodegradable-by-design" nanoparticles which have promising application in medicine as nano-carriers and represent lower toxicity and risks for living species and the environment.

6.
Eur J Pharm Biopharm ; 176: 180-187, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35640783

ABSTRACT

Graphene and its derivatives are in the edge of technology with a wide and diverse range of applications. In the last years, especially graphene quantum dots (GQDs) have had their biomedical application expanded in scope, mainly focused on cancer therapy, drug delivery and imaging. Although many studies have evaluated the application of this nanomaterial in biomedical field, only a few studies aimed to understand their biological impact in human health. In this regard, here we evaluated the impact of high doses of GQDs on the microcirculation of a healthy animal model to better assess risks of its use in humans. Our data show that successive applications of GQDs cause irreversible damage to the microcirculation. After seven days, a complete destruction of the microcirculation has been observed. In addition, GQDs showed substantial activity in human erythrocytes. Our findings suggest that risks associated with the use of GQDs, as well as all graphene derivatives, must be better understood, especially concerning biomedical application. A greater understanding of how GQDs impact body circulation, including the context of environmental and engineered nanosystems, is of paramount importance.


Subject(s)
Graphite , Nanostructures , Quantum Dots , Animals , Microcirculation
7.
Plants (Basel) ; 11(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35270099

ABSTRACT

Desirable changes in the biochemical composition of food plants is a key outcome of breeding strategies. The subsequent localization of nutritional phytochemicals in plant tissues gives important information regarding the extent of their synthesis across a tissue. We performed a detailed metabolomic analysis of phytochemical substances of grains from Zea mays L. (var. Pioneer) by tandem mass spectrometry and localization by confocal microscopy. We found that anthocyanins are located mainly in the aleurone layer of the grain. High-performance liquid chromatography in combination with ion trap tandem mass spectrometry revealed the presence of 56 compounds, including 30 polyphenols. This method allows for effective and rapid analysis of anthocyanins by plotting their distribution in seeds and grains of different plants. This approach will permit a more efficient screening of phenotypic varieties during food plant breeding.

8.
Int J Mol Sci ; 23(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35055175

ABSTRACT

The investigation of the combined toxic action of different types of nanoparticles (NPs) and their interaction between each other and with aquatic organisms is an important problem of modern ecotoxicology. In this study, we assessed the individual and mixture toxicities of cadmium and zinc sulfides (CdS and ZnS), titanium dioxide (TiO2), and two types of mesoporous silicon dioxide (with no inclusions (SMB3) and with metal inclusions (SMB24)) by a microalga growth inhibition bioassay. The counting and size measurement of microalga cells and NPs were performed by flow cytometry. The biochemical endpoints were measured by a UV-VIS microplate spectrophotometer. The highest toxicity was observed for SMB24 (EC50, 3.6 mg/L) and CdS (EC50, 21.3 mg/L). A combined toxicity bioassay demonstrated that TiO2 and the SMB3 NPs had a synergistic toxic effect in combinations with all the tested samples except SMB24, probably caused by a "Trojan horse effect". Sample SMB24 had antagonistic toxic action with CdS and ZnS, which was probably caused by metal ion scavenging.


Subject(s)
Microalgae/growth & development , Oxides/toxicity , Sulfides/toxicity , Water Pollutants, Chemical/toxicity , Cadmium Compounds/toxicity , Drug Interactions , Microalgae/drug effects , Nanoparticles , Silicon Dioxide/toxicity , Titanium/toxicity , Zinc Compounds/toxicity
9.
Toxics ; 9(10)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34678957

ABSTRACT

Vehicle emission particles (VEPs) represent a significant part of air pollution in urban areas. However, the toxicity of this category of particles in different aquatic organisms is still unexplored. This work aimed to extend the understanding of the toxicity of the vehicle exhaust particles in two species of marine diatomic microalgae, the planktonic crustacean Artemia salina, and the sea urchin Strongylocentrotus intermedius. These aquatic species were applied for the first time in the risk assessment of VEPs. Our results demonstrated that the samples obtained from diesel-powered vehicles completely prevented egg fertilization of the sea urchin S. intermedius and caused pronounced membrane depolarization in the cells of both tested microalgae species at concentrations between 10 and 100 mg/L. The sample with the highest proportion of submicron particles and the highest content of polycyclic aromatic hydrocarbons (PAHs) had the highest growth rate inhibition in both microalgae species and caused high toxicity to the crustacean. The toxicity level of the other samples varied among the species. We can conclude that metal content and the difference in the concentrations of PAHs by itself did not directly reflect the toxic level of VEPs, but the combination of both a high number of submicron particles and high PAH concentrations had the highest toxic effect on all the tested species.

10.
Molecules ; 26(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34577050

ABSTRACT

The colored grain of wheat (Triticum aestivum L.) contains a large number of polyphenolic compounds that are biologically active ingredients. The purpose of this work was a comparative metabolomic study of extracts from anthocyaninless (control), blue, and deep purple (referred to here as black) grains of seven genetically related wheat lines developed for the grain anthocyanin pigmentation trait. To identify target analytes in ethanol extracts, high-performance liquid chromatography was used in combination with Bruker Daltonics ion trap mass spectrometry. The results showed the presence of 125 biologically active compounds of a phenolic (85) and nonphenolic (40) nature in the grains of T. aestivum (seven lines). Among them, a number of phenolic compounds affiliated with anthocyanins, coumarins, dihydrochalcones, flavan-3-ols, flavanone, flavones, flavonols, hydroxybenzoic acids, hydroxycinnamic acids, isoflavone, lignans, other phenolic acids, stilbenes, and nonphenolic compounds affiliated with alkaloids, carboxylic acids, carotenoids, diterpenoids, essential amino acids, triterpenoids, sterols, nonessential amino acids, phytohormones, purines, and thromboxane receptor antagonists were found in T. aestivum grains for the first time. A comparative analysis of the diversity of the compounds revealed that the lines do not differ from each other in the proportion of phenolic (53.3% to 70.3% of the total number of identified compounds) and nonphenolic compounds (46.7% to 29.7%), but diversity of the compounds was significantly lower in grains of the control line. Even though the lines are genetically closely related and possess similar chemical profiles, some line-specific individual compounds were identified that constitute unique chemical fingerprints and allow to distinguish each line from the six others. Finally, the influence of the genotype on the chemical profiles of the wheat grains is discussed.


Subject(s)
Chromatography, Liquid , Tandem Mass Spectrometry , Terpenes , Triticum
11.
Biochem Res Int ; 2021: 9957490, 2021.
Article in English | MEDLINE | ID: mdl-34306755

ABSTRACT

The plant Rhodiola rosea L. of family Crassulaceae was extracted using the supercritical CO2-extraction method. Several experimental conditions were investigated in the pressure range of 200-500 bar, with the used volume of cosolvent ethanol in the amount of 1% in the liquid phase at a temperature in the range of 31-70°C. The most effective extraction conditions are pressure 350 bar and temperature 60°C. The extracts were analyzed by HPLC with MS/MS identification. 78 target analytes were isolated from Rhodiola rosea (Russia) using a series of column chromatography and mass spectrometry experiments. The results of the analysis showed a spectrum of the main active ingredients Rh. rosea: salidroside, rhodiolosides (B and C), rhodiosin, luteolin, catechin, quercetin, quercitrin, herbacetin, sacranoside A, vimalin, and others. In addition to the reported metabolites, 29 metabolites were newly annotated in Rh. rosea. There were flavonols: dihydroquercetin, acacetin, mearnsetin, and taxifolin-O-pentoside; flavones: apigenin-O-hexoside derivative, tricetin trimethyl ether 7-O-hexosyl-hexoside, tricin 7-O-glucoronyl-O-hexoside, tricin O-pentoside, and tricin-O-dihexoside; flavanones: eriodictyol-7-O-glucoside; flavan-3-ols: gallocatechin, hydroxycinnamic acid caffeoylmalic acid, and di-O-caffeoylquinic acid; coumarins: esculetin; esculin: fraxin; and lignans: hinokinin, pinoresinol, L-ascorbic acid, glucaric acid, palmitic acid, and linolenic acid. The results of supercritical CO2-extraction from roots and rhizomes of Rh. rosea, in particular, indicate that the extract contained all biologically active components of the plant, as well as inert mixtures of extracted compositions.

12.
Molecules ; 26(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203808

ABSTRACT

This work represents a comparative metabolomic study of extracts of wild grapes obtained from six different places in the Primorsky and Khabarovsk territories (Far East Russia) and extracts of grapes obtained from the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources (St. Petersburg). The metabolome analysis was performed by liquid chromatography in combination with ion trap mass spectrometry. The results showed the presence of 118 compounds in ethanolic extracts of V. amurensis grapes. In addition, several metabolites were newly annotated in V. amurensis. The highest diversity of phenolic compounds was identified in the samples of the V. amurensis grape collected in the vicinity of Vyazemsky (Khabarovsk Territory) and the floodplain of the Arsenyevka River (Primorsky Territory), compared to the other wild samples and cultural grapes obtained in the collection of N.I. Vavilov All-Russian Institute of Plant Genetic Resources.


Subject(s)
Phenols/analysis , Vitis/chemistry , Vitis/metabolism , Chromatography, Liquid/methods , Fruit/chemistry , Metabolomics/methods , Phenols/chemistry , Russia , Tandem Mass Spectrometry/methods
13.
Toxicol Rep ; 8: 880-887, 2021.
Article in English | MEDLINE | ID: mdl-33981588

ABSTRACT

Electroplating is a widely used group of industrial processes that make a metal coating on a solid substrate. Our previous research studied the concentrations, characteristics, and chemical composition of nano- and microparticles emitted during different electroplating processes. The objective of this study was to evaluate the environmental toxicity of particulate matter obtained from five different electrochemical processes. We collected airborne particle samples formed during aluminum cleaning, aluminum etching, chemical degreasing, nonferrous metals etching, and nickel plating. The toxicity of the particles was evaluated by the standard microalgae growth rate inhibition test. Additionally, we evaluated membrane potential and cell size changes in the microalgae H. akashiwo and P. purpureum exposed to the obtained suspensions of electroplating particles. The findings of this research demonstrate that the aquatic toxicity of electroplating emissions significantly varies between different industrial processes and mostly depends on particle chemical composition and solubility rather than the number of insoluble particles. The sample from an aluminum cleaning workshop was significantly more toxic for both microalgae species compared to the other samples and demonstrated dose and time-dependent toxicity. The samples obtained during chemical degreasing and nonferrous metals etching processes induced depolarization of microalgal cell membranes, demonstrated the potential of chronic toxicity, and stimulated the growth rate of microalgae after 72 h of exposure. Moreover, the sample from a nonferrous metals etching workshop revealed hormetic dose-response toxicity in H. akashiwo, which can lead to harmful algal blooms in the environment.

14.
J Biomed Nanotechnol ; 17(1): 131-148, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33653502

ABSTRACT

Graphene, including graphene quantum dots, its oxide and unoxidized forms (pure graphene) have several properties, like fluorescence, electrical conductivity, theoretical surface area, low toxicity, and high biocompatibility. In this study, we evaluated genotoxicity (in silico analysis using the functional density theory-FDT), cytotoxicity (human glioblastoma cell line), in vivo pharmacokinetics, in vivo impact on microcirculation and cell internalization assay. It was also radiolabeled with lutetium 177 (177Lu), a beta emitter radioisotope to explore its therapeutic use as nanodrug. Finally, the impact of its disposal in the environment was analyzed using ecotoxicological evaluation. FDT analysis demonstrated that graphene can construct covalent and non-covalent bonds with different nucleobases, and graphene oxide is responsible for generation of reactive oxygen species (ROS), corroborating its genotoxicity. On the other hand, non-cytotoxic effect on glioblastoma cells could be demonstrated. The pharmacokinetics analysis showed high plasmatic concentration and clearance. Topical application of 0.1 and 1 mg/kg of graphene nanoparticles on the hamster skinfold preparation did not show inflammatory effect. The cell internalization assay showed that 1-hour post contact with cells, graphene can cross the plasmatic membrane and accumulate in the cytoplasm. Radio labeling with 177Lu is possible and its use as therapeutic nanosystem is viable. Finally, the ecotoxicity analysis showed that A. silina exposed to graphene showed pronounced uptake and absorption in the nauplii gut and formation of ROS. The data obtained showed that although being formed exclusively of carbon and carbon-oxygen, graphene and graphene oxide respectively generate somewhat contradictory results and more studies should be performed to certify the safety use of this nanoplatform.


Subject(s)
Graphite , Nanoparticles , Quantum Dots , Cell Survival , Graphite/toxicity , Humans , Oxides , Reactive Oxygen Species
15.
Molecules ; 25(18)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906811

ABSTRACT

Extraction process of Cucumaria frondosa japonica Semper, 1868, which are subspecies of Cucumaria frondosa (Gunnerus, 1767), were studied. It was shown that supercritical carbon dioxide extraction of holothuria was more effective than conventional solvent extraction. Step-by-step extraction with carbon dioxide followed by supercritical extraction with the addition of a co-solvent of ethanol can almost double the yields of extracts of triterpene glycosides, styrenes and carotenoids. Moreover, the fraction of triterpene glycosides practically does not contain colored impurities, in contrast to traditional ethanol extraction. The obtained extracts by HPLC in combination with tandem mass spectrometry (HPLC-MS/MS) identified 15 triterpene glycosides, 18 styrene compounds and 14 carotenoids. Supercritical extraction made it possible to obtain extracts with yields superior to conventional hexane and alcohol extracts. Moreover, such an approach with the use of supercritical fluid extraction (SFE) and subsequent profiling of metabolites can help with the study of holothuria species that are not as well studied.


Subject(s)
Carbon Dioxide/chemistry , Carbon Dioxide/isolation & purification , Chromatography, Supercritical Fluid , Cucumaria/chemistry , Animals , Carotenoids/chemistry , Chromatography, Liquid , Glycosides/chemistry , Molecular Structure , Sterols/chemistry , Tandem Mass Spectrometry , Triterpenes/chemistry
16.
Nanomaterials (Basel) ; 10(9)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933127

ABSTRACT

With the increasing annual production of nanoparticles (NPs), the risks of their harmful influence on the environment and human health are rising. However, our knowledge about the mechanisms of interaction between NPs and living organisms is limited. Prior studies have shown that echinoderms, and especially sea urchins, represent one of the most suitable models for risk assessment in environmental nanotoxicology. To the best of the authors' knowledge, the sea urchin Strongylocentrotus intermedius has not been used for testing the toxicity of NPs. The present study was designed to determine the effect of 10 types of common NPs on spermatozoa activity, egg fertilization, and early stage of embryo development of the sea urchin S. intermedius. In this research, we used two types of multiwalled carbon nanotubes (CNT-1 and CNT-2), two types of carbon nanofibers (CNF-1 and CNF-2), two types of silicon nanotubes (SNT-1 and SNT-2), nanocrystals of cadmium and zinc sulfides (CdS and ZnS), gold NPs (Au), and titanium dioxide NPs (TiO2). The results of the embryotoxicity test showed the following trend in the toxicity level of used NPs: Au > SNT-2 > SNT-1 > CdS > ZnS > CNF-2 > CNF-1 > TiO2 > CNT-1 > CNT-2. This research confirmed that the sea urchin S. intermedius can be considered as a sensitive and stable test model in marine nanotoxicology.

17.
Toxicol Rep ; 7: 947-954, 2020.
Article in English | MEDLINE | ID: mdl-32793424

ABSTRACT

Carbon nanofibers (CNFs) are widely used in consumer products today. In this study, we assessed the effects of CNFs on the digestive system of three freshwater invertebrate species (Gammaridae, Ephemerellidae, and Chironomidae). The aquatic insects Diamesa sp., Drunella cryptomeria, and Gammarus suifunensis were incubated with the CNFs at the concentration of 100 mg/L during the 7-days period. Histological examination of the whole specimens and the longitudinal sections revealed no toxic effects of CNFs. However, a noticeable change in the structure of the CNFs accumulated in the intestines of the aquatic insects was found by Raman spectroscopy. The registered decrease in the relative proportion of amorphous carbon included in the CNF sample was found in the intestines of Diamesa sp. and D. cryptomeria. The registered effect can indicate a biodegradation of amorphous carbon in the digestive tract of these two insect species. In contrast, the decrease of highly structured carbons and the decrease of G-bonds intensity were registered in the digestive tract of G. suifunensis. This observation demonstrates the partial biodegradation of CNFs in the digestive tract of G. suifunensis.

18.
Molecules ; 25(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32531905

ABSTRACT

Woody liana Schisandra chinensis contains valuable lignans, which are phenylpropanoids with valuable biological activity. Among green and selective extraction methods, supercritical carbon dioxide (SC-CO2) was shown to be the method of choice for the recovery of these naturally occurring compounds. Carbon dioxide (CO2) was the solvent with the flow rate (10-25 g/min) with 2% ethanol as co-solvent. In this piece of work operative parameters and working conditions were optimized by experimenting with different pressures (200-400 bars) and temperatures (40-60 °C). The extraction time varied from 60 to 120 min. HPLC-SPD-ESI -MS/MS techniques were applied to detect target analytes. Twenty-six different lignans were identified in the S. chinensis SC-CO2 extracts.


Subject(s)
Carbon Dioxide/analysis , Chromatography, High Pressure Liquid/methods , Chromatography, Supercritical Fluid/methods , Plant Extracts/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Carbon Dioxide/isolation & purification , Schisandra
19.
Animals (Basel) ; 10(5)2020 May 10.
Article in English | MEDLINE | ID: mdl-32397595

ABSTRACT

Nanoparticles (NPs) have broad applications in medicine, cosmetics, optics, catalysis, environmental purification, and other areas nowadays. With increasing annual production of NPs, the risks of their harmful influence on the environment and human health are also increasing. Currently, our knowledge about the mechanisms of the interaction between NPs and living organisms is limited. The marine species and their habitat environment are under continuous stress owing to the anthropogenic activities, which result in the release of NPs in the aquatic environment. We used a bioassay model with hemocytes of three bivalve mollusc species, namely, Crenomytilus grayanus, Modiolus modiolus, and Arca boucardi, to evaluate the toxicity of 10 different types of NPs. Specifically, we compared the cytotoxic effects and cell-membrane polarization changes in the hemocytes exposed to carbon nanotubes, carbon nanofibers, silicon nanotubes, cadmium and zinc sulfides, Au-NPs, and TiO2 NPs. Viability and the changes in hemocyte membrane polarization were measured by the flow cytometry method. The highest aquatic toxicity was registered for metal-based NPs, which caused cytotoxicity to the hemocytes of all the studied bivalve species. Our results also highlighted different sensitivities of the used tested mollusc species to specific NPs.

20.
Environ Res ; 186: 109513, 2020 07.
Article in English | MEDLINE | ID: mdl-32305679

ABSTRACT

This study reports the differences in toxic action between cadmium sulfide (CdS) and zinc sulfide (ZnS) nanoparticles (NPs) prepared by recently developed xanthate-mediated method. The aquatic toxicity of the synthesized NPs on four marine microalgae species was explored. Growth rate, esterase activity, membrane potential, and morphological changes of microalgae cells were evaluated using flow cytometry and optical microscopy. CdS and ZnS NPs demonstrated similar level of general toxicity and growth-rate inhibition to all used microalgae species, except the red algae P. purpureum. More specifically, CdS NPs caused higher inhibition of growth rate for C. muelleri and P. purpureum, while ZnS NPs were more toxic for A. ussuriensis and H. akashiwo species. Our findings suggest that the sensitivity of different microalgae species to CdS and ZnS NPs depends on the chemical composition of NPs and their ability to interact with the components of microalgal cell-wall. The red microalga was highly resistant to ZnS NPs most likely due to the presence of phycoerythrin proteins in the outer membrane bound Zn2+ cations defending their cells from further toxic influence. The treatment with CdS NPs caused morphological changes and biochemical disorder in all tested microalgae species. The toxicity of CdS NPs is based on their higher photoactivity under visible light irradiation and lower dissociation in water, which allows them to generate more reactive oxygen species and create a higher risk of oxidative stress to aquatic organisms. The results of this study contribute to our understanding of the parameters affecting the aquatic toxicity of semiconductor NPs and provide a basis for further investigations.


Subject(s)
Microalgae , Nanoparticles , Cadmium Compounds , Nanoparticles/toxicity , Sulfides/toxicity , Zinc Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...