Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 126(5): 057702, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33605758

ABSTRACT

Qubits based on Majorana zero modes are a promising path towards topological quantum computing. Such qubits, though, are susceptible to quasiparticle poisoning which does not have to be small by topological argument. We study the main sources of the quasiparticle poisoning relevant for realistic devices-nonequilibrium above-gap quasiparticles and equilibrium localized subgap states. Depending on the parameters of the system and the architecture of the qubit either of these sources can dominate the qubit decoherence. However, we find in contrast to naive estimates that in moderately disordered, floating Majorana islands the quasiparticle poisoning can have timescales exceeding seconds.

2.
Article in English | MEDLINE | ID: mdl-32726771

ABSTRACT

We study the effects of pseudo-magnetic fields on Weyl semimetals with over-tilted Weyl cones, or type II cones. We compare the phenomenology of the resulting pseudo-Landau levels in the type II Weyl semimetal to the known case of type I cones. We predict that due to the nature of the chiral Landau level resulting from a magnetic field, a pseudo-magnetic field, or their combination, the optical conductivity can be utilized to detect a type II phase and deduce the direction of the tilt. Finally, we discuss ways to engineer homogeneous and inhomogeneous type II semimetals via generalizations of known layered constructions in order to create controlled pseudo-magnetic fields and over-tilted cones.

3.
Phys Rev Lett ; 123(23): 237002, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868504

ABSTRACT

By tuning the angle between graphene layers to specific "magic angles" the lowest energy bands of twisted bilayer graphene (TBLG) can be made flat. The flat nature of the bands favors the formation of collective ground states and, in particular, TBLG has been shown to support superconductivity. When the energy bands participating in the superconductivity are well isolated, the superfluid weight scales inversely with the effective mass of such bands. For flat band systems one would therefore conclude that even if superconducting pairing is present, most of the signatures of the superconducting state should be absent. This conclusion is at odds with the experimental observations for TBLG. We calculate the superfluid weight for TBLG taking into account both the conventional contribution and the contribution arising from the quantum geometry of the bands. We find that both contributions are larger than one would expect treating the bands as well isolated, that at the magic angle the geometric contribution is larger than the conventional one, and that for small deviations away from the magic angle the conventional contribution is larger than the geometric one. Our results show that, despite the flatness of the bands the superfluid weight in TBLG is finite and consistent with experimental observations. We also show how the superfluid weight can be tuned by varying the chemical potential and the twist angle opening the possibility to tune the nature of the superconducting transition between the standard BCS transition and the Berezinskii-Kosterlitz-Thouless transition.

4.
Phys Rev Lett ; 123(19): 196401, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31765221

ABSTRACT

We construct a two-dimensional higher-order topological phase protected by a quasicrystalline eightfold rotation symmetry. Our tight-binding model describes a superconductor on the Ammann-Beenker tiling hosting localized Majorana zero modes at the corners of an octagonal sample. In order to analyze this model, we introduce Hamiltonians generated by a local rule, and use this concept to identify the bulk topological properties. We find a Z_{2} bulk topological invariant protecting the corner modes. Our work establishes that there exist topological phases protected by symmetries impossible in a crystal.

5.
Nat Commun ; 10(1): 245, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30651552

ABSTRACT

Quantum computation by non-Abelian Majorana zero modes (MZMs) offers an approach to achieve fault tolerance by encoding quantum information in the non-local charge parity states of semiconductor nanowire networks in the topological superconductor regime. Thus far, experimental studies of MZMs chiefly relied on single electron tunneling measurements, which lead to the decoherence of the quantum information stored in the MZM. As a next step towards topological quantum computation, charge parity conserving experiments based on the Josephson effect are required, which can also help exclude suggested non-topological origins of the zero bias conductance anomaly. Here we report the direct measurement of the Josephson radiation frequency in indium arsenide nanowires with epitaxial aluminium shells. We observe the 4π-periodic Josephson effect above a magnetic field of ≈200 mT, consistent with the estimated and measured topological phase transition of similar devices.

6.
Phys Rev Lett ; 121(10): 106601, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30240259

ABSTRACT

Time-reversal symmetry suppresses electron backscattering in a quantum-spin-Hall edge, yielding quantized conductance at zero temperature. Understanding the dominant corrections in finite-temperature experiments remains an unsettled issue. We study a novel mechanism for conductance suppression: backscattering caused by incoherent electromagnetic noise. Specifically, we show that an electric potential fluctuating randomly in time can backscatter electrons inelastically without constraints faced by electron-electron interactions. We quantify noise-induced corrections to the dc conductance in various regimes and propose an experiment to test this scenario.

7.
Phys Rev Lett ; 119(18): 187704, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29219554

ABSTRACT

Junctions created by coupling two superconductors via a semiconductor nanowire in the presence of high magnetic fields are the basis for the potential detection, fusion, and braiding of Majorana bound states. We study NbTiN/InSb nanowire/NbTiN Josephson junctions and find that the dependence of the critical current on the magnetic field exhibits gate-tunable nodes. This is in contrast with a well-known Fraunhofer effect, under which critical current nodes form a regular pattern with a period fixed by the junction area. Based on a realistic numerical model we conclude that the Zeeman effect induced by the magnetic field and the spin-orbit interaction in the nanowire are insufficient to explain the observed evolution of the Josephson effect. We find the interference between the few occupied one-dimensional modes in the nanowire to be the dominant mechanism responsible for the critical current behavior. We also report a strong suppression of critical currents at finite magnetic fields that should be taken into account when designing circuits based on Majorana bound states.

SELECTION OF CITATIONS
SEARCH DETAIL
...