Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 16526, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33020555

ABSTRACT

This paper presents a mathematical model of the vapor bubble growth in an initially uniformly superheated liquid. This model takes into account simultaneously the dynamic and thermal effects and includes the well-known classical equations: the Rayleigh equation and the heat conductivity equation, written with consideration of specifics associated with the process of liquid evaporation. We have obtained a semi-analytical solution to the problem, which consists in reducing the initial boundary value problem with a moving boundary to a system of ordinary differential equations of the first order, valid in a wide range of operating parameters of the process at all its stages: from inertial to thermal, including the transitional one. It is shown that at large times this solution is consistent with the known solutions of other authors obtained in the framework of the energy thermal model, in particular, for the high Jacob numbers, it is consistent with the Plesset-Zwick solution.

2.
Sci Rep ; 7: 40809, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28098194

ABSTRACT

Conceptually new methods of hydrate formation are proposed. The first one is based on the shock wave impact on a water-bubble medium. It is shown that the hydrate formation rate in this process is typically very high. A gas hydrate of carbon dioxide was produced. The process was experimentally studied using various initial conditions, as well as different external action magnitudes. The obtained experimental data are in good agreement with the proposed model. Other methods are based on the process of boiling liquefied gas in an enclosed volume of water (explosive boiling of a hydrating agent and the organization of cyclic boiling-condensation process). The key features of the methods are the high hydrate formation rate combined with a comparatively low power consumption leading to a great expected efficiency of the technologies based on them. The set of experiments was carried out. Gas hydrates of refrigerant R134a, carbon dioxide and propane were produced. The investigation of decomposition of a generated gas hydrate sample was made. The criteria of intensification of the hydrate formation process are formulated.

SELECTION OF CITATIONS
SEARCH DETAIL
...