Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446349

ABSTRACT

The microspore can follow two different developmental pathways. In vivo microspores follow the gametophytic program to produce pollen grains. In vitro, isolated microspores can be reprogrammed by stress treatments and follow the embryogenic program, producing doubled-haploid embryos. In the present study, we analyzed the dynamics and role of endogenous auxin in microspore development during these two different scenarios, in Brassica napus. We analyzed auxin concentration, cellular accumulation, the expression of the TAA1 auxin biosynthesis gene, and the PIN1-like efflux carrier gene, as well as the effects of inhibiting auxin biosynthesis by kynurenine on microspore embryogenesis. During the gametophytic pathway, auxin levels and TAA1 and PIN1-like expression were high at early stages, in tetrads and tapetum, while they progressively decreased during gametogenesis in both pollen and tapetum cells. In contrast, in microspore embryogenesis, TAA1 and PIN1-like genes were upregulated, and auxin concentration increased from the first embryogenic divisions. Kynurenine treatment decreased both embryogenesis induction and embryo production, indicating that auxin biosynthesis is required for microspore embryogenesis initiation and progression. The findings indicate that auxin exhibits two opposite profiles during these two microspore developmental pathways, which determine the different cell fates of the microspore.


Subject(s)
Indoleacetic Acids , Kynurenine , Indoleacetic Acids/metabolism , Kynurenine/metabolism , Plant Proteins/genetics , Pollen/genetics , Pollen/metabolism , Embryonic Development
2.
Front Plant Sci ; 14: 1181039, 2023.
Article in English | MEDLINE | ID: mdl-37389288

ABSTRACT

Epigenetic modifications play a vital role in the preservation of genome integrity and in the regulation of gene expression. DNA methylation, one of the key mechanisms of epigenetic control, impacts growth, development, stress response and adaptability of all organisms, including plants. The detection of DNA methylation marks is crucial for understanding the mechanisms underlying these processes and for developing strategies to improve productivity and stress resistance of crop plants. There are different methods for detecting plant DNA methylation, such as bisulfite sequencing, methylation-sensitive amplified polymorphism, genome-wide DNA methylation analysis, methylated DNA immunoprecipitation sequencing, reduced representation bisulfite sequencing, MS and immuno-based techniques. These profiling approaches vary in many aspects, including DNA input, resolution, genomic region coverage, and bioinformatics analysis. Selecting an appropriate methylation screening approach requires an understanding of all these techniques. This review provides an overview of DNA methylation profiling methods in crop plants, along with comparisons of the efficacy of these techniques between model and crop plants. The strengths and limitations of each methodological approach are outlined, and the importance of considering both technical and biological factors are highlighted. Additionally, methods for modulating DNA methylation in model and crop species are presented. Overall, this review will assist scientists in making informed decisions when selecting an appropriate DNA methylation profiling method.

3.
Nat Immunol ; 24(7): 1173-1187, 2023 07.
Article in English | MEDLINE | ID: mdl-37291385

ABSTRACT

Blood protein extravasation through a disrupted blood-brain barrier and innate immune activation are hallmarks of neurological diseases and emerging therapeutic targets. However, how blood proteins polarize innate immune cells remains largely unknown. Here, we established an unbiased blood-innate immunity multiomic and genetic loss-of-function pipeline to define the transcriptome and global phosphoproteome of blood-induced innate immune polarization and its role in microglia neurotoxicity. Blood induced widespread microglial transcriptional changes, including changes involving oxidative stress and neurodegenerative genes. Comparative functional multiomics showed that blood proteins induce distinct receptor-mediated transcriptional programs in microglia and macrophages, such as redox, type I interferon and lymphocyte recruitment. Deletion of the blood coagulation factor fibrinogen largely reversed blood-induced microglia neurodegenerative signatures. Genetic elimination of the fibrinogen-binding motif to CD11b in Alzheimer's disease mice reduced microglial lipid metabolism and neurodegenerative signatures that were shared with autoimmune-driven neuroinflammation in multiple sclerosis mice. Our data provide an interactive resource for investigation of the immunology of blood proteins that could support therapeutic targeting of microglia activation by immune and vascular signals.


Subject(s)
Alzheimer Disease , Microglia , Mice , Animals , Microglia/metabolism , Multiomics , Blood-Brain Barrier/metabolism , Alzheimer Disease/genetics , Fibrinogen
4.
Plants (Basel) ; 12(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37050168

ABSTRACT

Somatic embryogenesis (SE) is a feasible in vitro regeneration system with biotechnological applications in breeding programs, although, in many forest species, SE is highly inefficient, mainly due to their recalcitrance. On the other hand, SE represents a valuable model system for studies on cell reprogramming, totipotency acquisition, and embryogenic development. The molecular mechanisms that govern the transition of plant somatic cells to embryogenic cells are largely unknown. There is increasing evidence that auxins mediate this transition and play a key role in somatic embryo development, although data on woody species are very limited. In this study, we analyzed the dynamics and possible role of endogenous auxin during SE in cork oak (Quercus suber L.). The auxin content was low in somatic cells before cell reprogramming, while it increased after induction of embryogenesis, as revealed by immunofluorescence assays. Cellular accumulation of endogenous auxin was also detected at the later stages of somatic embryo development. These changes in auxin levels correlated with the expression patterns of the auxin biosynthesis (QsTAR2) and signaling (QsARF5) genes, which were upregulated after SE induction. Treatments with the inhibitor of auxin biosynthesis, kynurenine, reduced the proliferation of proembryogenic masses and impaired further embryo development. QsTAR2 and QsARF5 were downregulated after kynurenine treatment. Our findings indicate a key role of endogenous auxin biosynthesis and signaling in SE induction and multiplication, as well as somatic embryo development of cork oak.

5.
Environ Monit Assess ; 195(1): 195, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36512105

ABSTRACT

Biomonitoring is a valuable tool for assessing the presence and effects of air pollutants such as heavy metals (HM); due to their toxicity and stability, these compounds can affect human health and the balance of ecosystems. To assess its potential as a sentinel organism of HM pollution, the wild plant Gnaphalium lavandulifolium was exposed to four sites in the metropolitan area of México Valley (MAMV): Altzomoni (ALT) Coyoacán (COY), Ecatepec (ECA), and Tlalnepantla (TLA) during 2, 4, and 8 weeks, between October and November 2019. Control plants remained under controlled conditions. The chemical analysis determined twelve HM (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn) in the leaves. Macroscopic damage to the leaves, later determined in semi-thin sections under light microscopy, lead to a finer analysis. Transmission electron microscope (TEM) showed major structural changes: chromatin condensation, protoplast shrinkage, cytoplasm vacuolization, cell wall thinning, decreased number and size of starch grains, and plastoglobules in chloroplasts. All these characteristics of stress-induced programed cell death (sPCD) were related to the significant increase of toxic HM in the leaves of the exposed plants compared to the control (p < 0.05). Immunohistochemistry revealed a significant amount of proteases with caspase 3-like activity in ECA and TLA samples during long exposure times. Ultrastructural changes and sPCD features detected confirmed the usefulness of G. lavandulifolium as a good biomonitor of HM contamination. They supported the possibility of considering subcellular changes as markers of abiotic stress conditions in plants.


Subject(s)
Gnaphalium , Metals, Heavy , Humans , Biological Monitoring , Environmental Monitoring , Ecosystem , Mexico , Metals, Heavy/toxicity , Metals, Heavy/analysis
7.
Nutrients ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079738

ABSTRACT

Supplementation with Citrulline (Cit) has been shown to have a positive impact on aerobic exercise performance and related outcomes such as lactate, oxygen uptake (VO2) kinetics, and the rate of perceived exertion (RPE), probably due to its relationship to endogenous nitric oxide production. However, current research has shown this to be controversial. The main objective of this systematic review and meta-analysis was to analyze and assess the effects of Cit supplementation on aerobic exercise performance and related outcomes, as well as to show the most suitable doses and timing of ingestion. A structured literature search was carried out by the PRISMA® (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and PICOS guidelines in the following databases: Pubmed/Medline, Scopus, and Web of Science (WOS). A total of 10 studies were included in the analysis, all of which exclusively compared the effects of Cit supplementation with those of a placebo group on aerobic performance, lactate, VO2, and the RPE. Those articles that used other supplements and measured other outcomes were excluded. The meta-analysis was carried out using Hedges' g random effects model and pooled standardized mean differences (SMD). The results showed no positive effects of Cit supplementation on aerobic performance (pooled SMD = 0.15; 95% CI (-0.02 to 0.32); I2, 0%; p = 0.08), the RPE (pooled SMD = -0.03; 95% CI (-0.43 to 0.38); I2, 49%; p = 0.9), VO2 kinetics (pooled SMD = 0.01; 95% CI (-0.16 to 0.17); I2, 0%; p = 0.94), and lactate (pooled SMD = 0.25; 95% CI (-0.10 to 0.59); I2, 0%; p = 0.16). In conclusion, Cit supplementation did not prove to have any benefits for aerobic exercise performance and related outcomes. Where chronic protocols seemed to show a positive tendency, more studies in the field are needed to better understand the effects.


Subject(s)
Citrulline , Exercise , Citrulline/pharmacology , Dietary Supplements , Lactates
8.
New Phytol ; 236(5): 1888-1907, 2022 12.
Article in English | MEDLINE | ID: mdl-35872574

ABSTRACT

Root-knot nematodes (RKNs) induce giant cells (GCs) within galls which are characterized by large-scale gene repression at early stages. However, the epigenetic mechanism(s) underlying gene silencing is (are) still poorly characterized. DNA methylation in Arabidopsis galls induced by Meloidogyne javanica was studied at crucial infection stages (3 d post-infection (dpi) and 14 dpi) using enzymatic, cytological, and sequencing approaches. DNA methyltransferase mutants (met1, cmt2, cmt3, cmt2/3, drm1/2, ddc) and a DNA demethylase mutant (ros1), were analyzed for RKN resistance/tolerance, and galls were characterized by confocal microscopy and RNA-seq. Early galls were hypermethylated, and the GCs were found to be the major contributors to this hypermethylation, consistent with the very high degree of gene repression they exhibit. By contrast, medium/late galls showed no global increase in DNA methylation compared to uninfected roots, but exhibited large-scale redistribution of differentially methylated regions (DMRs). In line with these findings, it was also shown that DNA methylation and demethylation mutants showed impaired nematode reproduction and gall/GC-development. Moreover, siRNAs that were exclusively present in early galls accumulated at hypermethylated DMRs, overlapping mostly with retrotransposons in the CHG/CG contexts that might be involved in their repression, contributing to their stability/genome integrity. Promoter/gene methylation correlated with differentially expressed genes encoding proteins with basic cell functions. Both mechanisms are consistent with reprogramming host tissues for gall/GC formation. In conclusion, RNA-directed DNA methylation (RdDM; DRM2/1) pathways, maintenance methyltransferases (MET1/CMT3) and demethylation (ROS1) appear to be prominent mechanisms driving a dynamic regulation of the epigenetic landscape during RKN infection.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Tylenchoidea , Animals , Arabidopsis/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Gene Expression Regulation, Plant , DNA Methylation/genetics , Plant Roots/genetics , Plant Roots/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Tylenchoidea/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism
10.
J Exp Bot ; 72(22): 7808-7825, 2021 12 04.
Article in English | MEDLINE | ID: mdl-34338766

ABSTRACT

Plant in vitro regeneration systems, such as somatic embryogenesis, are essential in breeding; they permit propagation of elite genotypes, production of doubled-haploids, and regeneration of whole plants from gene editing or transformation events. However, in many crop and forest species, somatic embryogenesis is highly inefficient. We report a new strategy to improve in vitro embryogenesis using synthetic small molecule inhibitors of mammalian glycogen synthase kinase 3ß (GSK-3ß), never used in plants. These inhibitors increased in vitro embryo production in three different systems and species, microspore embryogenesis of Brassica napus and Hordeum vulgare, and somatic embryogenesis of Quercus suber. TDZD-8, a representative compound of the molecules tested, inhibited GSK-3 activity in microspore cultures, and increased expression of embryogenesis genes FUS3, LEC2, and AGL15. Plant GSK-3 kinase BIN2 is a master regulator of brassinosteroid (BR) signalling. During microspore embryogenesis, BR biosynthesis and signalling genes CPD, GSK-3-BIN2, BES1, and BZR1 were up-regulated and the BAS1 catabolic gene was repressed, indicating activation of the BR pathway. TDZD-8 increased expression of BR signalling elements, mimicking BR effects. The findings support that the small molecule inhibitors promoted somatic embryogenesis by activating the BR pathway, opening up the way for new strategies using GSK-3ß inhibitors that could be extended to other species.


Subject(s)
Cellular Reprogramming , Glycogen Synthase Kinase 3 , Animals , Embryonic Development , Forests , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta/genetics
11.
Biology (Basel) ; 10(8)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34439998

ABSTRACT

Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.

12.
Int J Mol Sci ; 22(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34281171

ABSTRACT

Although epigenetic modifications have been intensely investigated over the last decade due to their role in crop adaptation to rapid climate change, it is unclear which epigenetic changes are heritable and therefore transmitted to their progeny. The identification of epigenetic marks that are transmitted to the next generations is of primary importance for their use in breeding and for the development of new cultivars with a broad-spectrum of tolerance/resistance to abiotic and biotic stresses. In this review, we discuss general aspects of plant responses to environmental stresses and provide an overview of recent findings on the role of transgenerational epigenetic modifications in crops. In addition, we take the opportunity to describe the aims of EPI-CATCH, an international COST action consortium composed by researchers from 28 countries. The aim of this COST action launched in 2020 is: (1) to define standardized pipelines and methods used in the study of epigenetic mechanisms in plants, (2) update, share, and exchange findings in epigenetic responses to environmental stresses in plants, (3) develop new concepts and frontiers in plant epigenetics and epigenomics, (4) enhance dissemination, communication, and transfer of knowledge in plant epigenetics and epigenomics.


Subject(s)
Crops, Agricultural/genetics , Stress, Physiological/genetics , Acclimatization/genetics , Adaptation, Physiological/genetics , DNA Methylation , Epigenesis, Genetic , Epigenomics/methods , Gene Expression Regulation, Plant , Inheritance Patterns , Plant Breeding/methods
13.
Nutrients ; 13(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207034

ABSTRACT

The aim of this study was to analyze dietary intake and body composition in a group of elite-level competitive rhythmic gymnasts from Spain. We undertook body composition and nutritional analysis of 30 elite gymnasts, divided into two groups by age: pre-teen (9-12 years) (n = 17) and teen (13-18 years) (n = 13). Measures of height, weight, and bioimpedance were used to calculate body mass index and percent body fat. Energy and nutrient intakes were assessed based on 7-day food records. The two groups had similar percentages of total body fat (pre-teen: 13.99 ± 3.83% vs. teen: 14.33 ± 5.57%; p > 0.05). The energy availability values for pre-teens were above the recommended values (>40 kcal/FFM/day) 69.38 ± 14.47 kcal/FFM/day, while those for the teens were much lower (34.7 ± 7.5 kcal/FFM/day). The distribution of the daily energy intake across the macronutrients indicates that both groups ingested less than the recommended level of carbohydrates and more than the recommended level of fat. Very low intakes of calcium and vitamin D among other micronutrients were also noted. The main finding is that teenage gymnasts do not consume as much energy as they need each day, which explains their weight and development. Moreover, they are at a high risk of developing low energy availability that could negatively impact their performance and future health.


Subject(s)
Body Composition , Eating , Adolescent , Body Mass Index , Child , Energy Intake , Humans , Micronutrients , Spain , Vitamins
14.
J Plant Physiol ; 258-259: 153333, 2021.
Article in English | MEDLINE | ID: mdl-33581559

ABSTRACT

Zygotic and somatic embryogenesis in plants is a fascinating event that is finely regulated through the expression of a specific group of genes and dynamic levels of plant hormones whose concerted action determines the fate that specific cells follow towards zygotic or somatic embryo development. This work studied different stages of Capsicum chinense Jacq. zygotic and somatic embryogenesis. HPLC quantification determined that the levels of indole-3-acetic acid (IAA) increase as the zygotic or somatic embryogenesis progresses, being higher at maturity, thus supporting a positive correlation between embryo cell differentiation and IAA increase. A monoclonal anti-IAA-antibody was used to detect IAA levels. Findings revealed a dynamic pattern of auxin distribution along the different embryogenic embryonic stages. In the early stages of zygotic embryos, the IAA gradient was observed in the basal cells of the suspensor and the hypostases, suggesting that they are the initial source of the IAA hormone. As embryogenesis proceeds, the dynamic of the IAA gradient is displaced to the embryo and endosperm cells. In the case of induced somatic embryogenesis, the IAA gradient was detected in the dividing cells of the endodermis, from where pre-embryogenic cells emerge. However, the analysis of somatic embryos revealed that IAA was homogeneously distributed. This study shows evidence supporting a correlation between IAA levels during zygotic or somatic embryogenesis in Capsicum chinense species.


Subject(s)
Capsicum/embryology , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Seeds/embryology , Zygote/growth & development
15.
Plant Cell Physiol ; 61(12): 2097-2110, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33057654

ABSTRACT

Microspore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process. Metacaspases (MCAs), a phylogenetically broad group of cysteine proteases, and autophagy, the major catabolic process in eukaryotes, are critical regulators of the balance between cell death and survival in various organisms. In this study, we analyzed the role of MCAs and autophagy in cell death during stress-induced microspore embryogenesis in Brassica napus. We demonstrate that this cell death is accompanied by the transcriptional upregulation of three BnMCA genes (BnMCA-Ia, BnMCA-IIa and BnMCA-IIi), an increase in MCA proteolytic activity and the activation of autophagy. Accordingly, inhibition of autophagy and MCA activity, either individually or in combination, suppressed cell death and increased the number of proembryos, indicating that both components play a pro-cell death role and account for decreased efficiency of early embryonic development. Therefore, MCAs and/or autophagy can be used as new biotechnological targets to improve in vitro embryogenesis in Brassica species and doubled-haploid plant production in crop breeding and propagation programs.


Subject(s)
Autophagic Cell Death , Brassica napus/growth & development , Caspases/metabolism , Plant Proteins/metabolism , Pollen/physiology , Seeds/growth & development , Brassica napus/physiology , Gene Expression Regulation, Plant , Seeds/physiology , Stress, Physiological
16.
Plants (Basel) ; 9(7)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708602

ABSTRACT

Some plant cells are able to rebuild new organs after tissue damage or in response to definite stress treatments and/or exogenous hormone applications. Whole plants can develop through de novo organogenesis or somatic embryogenesis. Recent findings have enlarged our understanding of the molecular and cellular mechanisms required for tissue reprogramming during plant regeneration. Genetic analyses also suggest the key role of epigenetic regulation during de novo plant organogenesis. A deeper understanding of plant regeneration might help us to enhance tissue culture optimization, with multiple applications in plant micropropagation and green biotechnology. In this review, we will provide additional insights into the physiological and molecular framework of plant regeneration, including both direct and indirect de novo organ formation and somatic embryogenesis, and we will discuss the key role of intrinsic and extrinsic constraints for cell reprogramming during plant regeneration.

17.
Methods Mol Biol ; 2149: 403-427, 2020.
Article in English | MEDLINE | ID: mdl-32617948

ABSTRACT

The arabinogalactan proteins are highly glycosylated and ubiquitous in plants. They are involved in several aspects of plant development and reproduction; however, the mechanics behind their function remains for the most part unclear, as the carbohydrate moiety, covering the most part of the protein core, is poorly characterized at the individual protein level. Traditional immunolocalization using antibodies that recognize the glycosidic moiety of the protein cannot be used to elucidate individual proteins' distribution, function, or interactors. Indirect approaches are typically used to study these proteins, relying on reverse genetic analysis of null mutants or using a reporter fusion system. In the method presented here, we propose the use of RNA probes to assist in the localization of individual AGPs expression/mRNAs in tissues of Arabidopsis by fluorescent in situ hybridization, FISH. An extensive description of all aspects of this technique is provided, from RNA probe synthesis to the hybridization, trying to overcome the lack of specific antibodies for the protein core of AGPs.


Subject(s)
Arabidopsis Proteins/analysis , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Mucoproteins/analysis , Mucoproteins/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , DNA/analysis , DNA/isolation & purification , Indoles/chemistry , Mucoproteins/metabolism , Ovule/cytology , Ovule/genetics , Plant Proteins/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , RNA/analysis , RNA/metabolism , RNA Probes/chemical synthesis , RNA Probes/metabolism
18.
Front Plant Sci ; 10: 1200, 2019.
Article in English | MEDLINE | ID: mdl-31611902

ABSTRACT

Stress-induced microspore embryogenesis is a model in vitro system of cell reprogramming, totipotency acquisition, and embryo development. After induction, responsive microspores abandon their developmental program to follow an embryogenic pathway, leading to in vitro embryo formation. This process is widely used to produce doubled-haploid lines, essential players to create new materials in modern breeding programs, particularly in cereals, although its efficiency is still low in many crop species, because the regulating mechanisms are still elusive. Stress signaling and endogenous hormones, mainly auxin, have been proposed as determinant factors of microspore embryogenesis induction in some eudicot species; however, much less information is available in monocot plants. In this study, we have analyzed the dynamics and possible role of endogenous auxin during stress-induced microspore embryogenesis in the monocot Hordeum vulgare, barley. The results showed auxin accumulation in early proembryo cells, from embryogenesis initiation and a further increase with embryo development and differentiation, correlating with the induction and expression pattern of the auxin biosynthesis gene HvTAR2-like. Pharmacological treatments with kynurenine, inhibitor of auxin biosynthesis, and α-(p-chlorophenoxy)-isobutyric acid (PCIB), auxin antagonist, impaired embryogenesis initiation and development, indicating that de novo auxin synthesis and its activity were required for the process. Efflux carrier gene HvPIN1-like was also induced with embryogenesis initiation and progression; auxin transport inhibition by N-1-naphthylphthalamic acid significantly reduced embryo development at early and advanced stages. The results indicate activation of auxin biosynthesis with microspore embryogenesis initiation and progression, in parallel with the activation of polar auxin transport, and reveal a central role of auxin in the process in a monocot species. The findings give new insights into the complex regulation of stress-induced microspore embryogenesis, particularly in monocot plants for which information is still scarce, and suggest that manipulation of endogenous auxin content could be a target to improve in vitro embryo production.

19.
J Pediatr Hematol Oncol ; 41(3): e141-e145, 2019 04.
Article in English | MEDLINE | ID: mdl-30897609

ABSTRACT

Children with sickle cell anemia (SCA) often exhibit nutritional deficiencies and are at high risk of dying before the age of 5 years. Ensuring adequate nutrition is a critical part of health care for such children. This study aimed to investigate the association between nutritional status, nutrient intake, and food diversity in children with SCA. A descriptive cross-sectional study was conducted on 74 children with SCA, between 24 and 71 months of age. Anthropometric measurements, food and nutrients consumption were determined. The prevalence of low weight, stunting, and overweight/obesity were 16.2%, 35.1%, and 16.2%, respectively. Mean folic acid intake was low (49.05%±51.22%), whereas the intakes of protein (426.71%±171.93%), retinol (292.97%±403.88%), phosphorus (204.55%±151.35%), magnesium (233.02%±151.14%), iron (250.76%±165.81%), and zinc (243.21%±148.40%) were high. The dietary phosphorus/protein ratio was high for 31.1% of the children, and 44.6% of the children had low dietary diversity score. No correlation was found between food diversity, nutrient adequacy, and nutritional status. Despite the adequacy of the intake of most micronutrients, diet quality was inadequate, constituting mainly ultraprocessed foods. Knowing the food consumption pattern of these children enables a more resolute nutritional intervention.


Subject(s)
Anemia, Sickle Cell/diet therapy , Diet, Healthy , Food Preferences/physiology , Nutritional Status/physiology , Anemia, Sickle Cell/physiopathology , Body Weights and Measures , Child, Preschool , Cross-Sectional Studies , Eating/physiology , Female , Humans , Male , Micronutrients
20.
J Exp Bot ; 70(11): 2965-2978, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30753698

ABSTRACT

Under stress, isolated microspores are reprogrammed in vitro towards embryogenesis, producing doubled haploid plants that are useful biotechnological tools in plant breeding as a source of new genetic variability, fixed in homozygous plants in only one generation. Stress-induced cell death and low rates of cell reprogramming are major factors that reduce yield. Knowledge gained in recent years has revealed that initiation and progression of microspore embryogenesis involve a complex network of factors, whose roles are not yet well understood. Here, I review recent findings on the determinant factors underlying stress-induced microspore embryogenesis, focusing on the role of autophagy, cell death, auxin, chromatin modifications, and the cell wall. Autophagy and cell death proteases are crucial players in the response to stress, while cell reprogramming and acquisition of totipotency are regulated by hormonal and epigenetic mechanisms. Auxin biosynthesis, transport, and action are required for microspore embryogenesis. Initial stages involve DNA hypomethylation, H3K9 demethylation, and H3/H4 acetylation. Cell wall remodelling, with pectin de-methylesterification and arabinogalactan protein expression, is necessary for embryo development. Recent reports show that treatments with small modulators of autophagy, proteases, and epigenetic marks reduce cell death and enhance embryogenesis initiation in several crops, opening up new possibilities for improving in vitro embryo production in breeding programmes.


Subject(s)
Cellular Reprogramming , Crops, Agricultural/physiology , Plant Breeding , Pollen/embryology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...