Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38139408

ABSTRACT

Plant waste biomass is the most abundant renewable energy resource on Earth. The main problem with utilising this biomass in anaerobic digestion is the long and costly stage of degrading its complex structure into simple compounds. One of the promising solutions to this problem is the application of fungi of the Trichoderma genus, which show a high capacity to produce hydrolytic enzymes capable of degrading lignocellulosic biomass before anaerobic digestion. This article discusses the structure of plant waste biomass and the problems resulting from its structure in the digestion process. It presents the methods of pre-treatment of lignocellulose with a particular focus on biological solutions. Based on the latest research findings, key parameters related to the application of Trichoderma sp. as a pre-treatment method are discussed. In addition, the possibility of using the digestate from agricultural biogas plants as a carrier for the multiplication of the Trichoderma sp. fungi, which are widely used in many industries, is discussed.


Subject(s)
Trichoderma , Anaerobiosis , Biofuels , Biomass , Hydrolysis
2.
Int J Mol Sci ; 24(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37373189

ABSTRACT

In this paper, an anaerobic digestion (AD) study was conducted on confectionery waste with granular polylactide (PLA) as a cell carrier. Digested sewage sludge (SS) served as the inoculum and buffering agent of systems. This article shows the results of the analyses of the key experimental properties of PLA, i.e., morphological characteristics of the microstructure, chemical composition and thermal stability of the biopolymer. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, performed using the state-of-the-art next generation sequencing (NGS) technique, revealed that the material significantly enhanced bacterial proliferation; however, it does not change microbiome biodiversity, as also confirmed via statistical analysis. More intense microbial proliferation (compared to the control sample, without PLA and not digested, CW-control, CW-confectionery waste) may be indicative of the dual role of the biopolymer-support and medium. Actinobacteria (34.87%) were the most abundant cluster in the CW-control, while the most dominant cluster in digested samples was firmicutes: in the sample without the addition of the carrier (CW-dig.) it was 68.27%, and in the sample with the addition of the carrier (CW + PLA) it was only 26.45%, comparable to the control sample (CW-control)-19.45%. Interestingly, the number of proteobacteria decreased in the CW-dig. sample (17.47%), but increased in the CW + PLA sample (39.82%) compared to the CW-control sample (32.70%). The analysis of biofilm formation dynamics using the BioFlux microfluidic system shows a significantly faster growth of the biofilm surface area for the CW + PLA sample. This information was complemented by observations of the morphological characteristics of the microorganisms using fluorescence microscopy. The images of the CW + PLA sample showed carrier sections covered with microbial consortia.


Subject(s)
Bioreactors , Waste Disposal, Fluid , Anaerobiosis , Bioreactors/microbiology , Waste Disposal, Fluid/methods , Bacteria/genetics , Bacteria/metabolism , Sewage/microbiology , Polyesters/metabolism , Microbial Consortia/genetics , Biofilms , Genetic Variation
3.
Materials (Basel) ; 15(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36431599

ABSTRACT

The management of waste polylactide (PLA) in various solutions of thermophilic anaerobic digestion (AD) is problematic and often uneconomical. This paper proposes a different approach to the use of PLA in mesophilic AD, used more commonly on the industrial scale, which consists of assigning the function of a microbial carrier to the biopolymer. The study involved the testing of waste wafers and waste wafers and cheese in a co-substrate system, combined with digested sewage sludge. The experiment was conducted on a laboratory scale, in a batch bioreactor mode. They were used as test samples and as samples with the addition of a carrier: WF-control and WFC-control; WF + PLA and WFC + PLA. The main objective of the study was to verify the impact of PLA in the granular (PLAG) and powder (PLAP) forms on the stability and efficiency of the process. The results of the analysis of physicochemical properties of the carriers, including the critical thermal analysis by differential scanning calorimetry (DSC), as well as the amount of cellular biomass of Bacillus amyloliquefaciens obtained in a culture with the addition of the tested PLAG and PLAP, confirmed that PLA can be an effective cell carrier in mesophilic AD. The addition of PLAG produced better results for bacterial proliferation than the addition of powdered PLA. The highest level of dehydrogenase activity was maintained in the WFC + PLAG system. An increase in the volume of the methane produced for the samples digested with the PLA granules carrier was registered in the study. It went up by c.a. 26% for WF, from 356.11 m3 Mg-1 VS (WF-control) to 448.84 m3 Mg-1 VS (WF + PLAG), and for WFC, from 413.46 m3 Mg-1 VS, (WFC-control) to 519.98 m3 Mg-1 VS (WFC + PLAG).

4.
Sensors (Basel) ; 22(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36081052

ABSTRACT

The paper covers the problem of determination of defects and contamination in malting barley grains. The analysis of the problem indicated that although several attempts have been made, there are still no effective methods of identification of the quality of barley grains, such as the use of information technology, including intelligent sensors (currently, quality assessment of grain is performed manually). The aim of the study was the construction of a reduced set of the most important graphic descriptors from machine-collected digital images, important in the process of neural evaluation of the quality of BOJOS variety malting barley. Grains were sorted into three size fractions and seed images were collected. As a large number of graphic descriptors implied difficulties in the development and operation of neural classifiers, a PCA (Principal Component Analysis) statistical method of reducing empirical data contained in the analyzed set was applied. The grain quality expressed by an optimal set of transformed descriptors was modelled using artificial neural networks (ANN). The input layer consisted of eight neurons with a linear Postsynaptic Function (PSP) and a linear activation function. The one hidden layer was composed of sigmoid neurons having a linear PSP function and a logistic activation function. One sigmoid neuron was the output of the network. The results obtained show that neural identification of digital images with application of Principal Component Analysis (PCA) combined with neural classification is an effective tool supporting the process of rapid and reliable quality assessment of BOJOS malting barley grains.


Subject(s)
Hordeum , Edible Grain , Seeds
5.
Cells ; 11(16)2022 08 18.
Article in English | MEDLINE | ID: mdl-36010646

ABSTRACT

This paper analyses the impact of the diatomaceous earth/peat (DEP; 3:1) microbial carrier on changes in the bacterial microbiome and the development of biofilm in the anaerobic digestion (AD) of confectionery waste, combined with digested sewage sludge as inoculum. The physicochemical properties of the carrier material are presented, with particular focus on its morphological and dispersion characteristics, as well as adsorption and thermal properties. In this respect, the DEP system was found to be a suitable carrier for both mesophilic and thermophilic AD. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, carried out using next-generation sequencing (NGS), showed that the material has a modifying effect on the bacterial microbiome. While Actinobacteria was the most abundant cluster in the WF-control sample (WF-waste wafers), Firmicutes was the dominant cluster in the digested samples without the carrier (WF-dig.; dig.-digested) and with the carrier (WF + DEP). The same was true for the count of Proteobacteria, which decreased twofold during biodegradation in favor of Synergistetes. The Syntrophomonas cluster was identified as the most abundant genus in the two samples, particularly in WF + DEP. This information was supplemented by observations of morphological features of microorganisms carried out using fluorescence microscopy. The biodegradation process itself had a significant impact on changes in the microbiome of samples taken from anaerobic bioreactors, reducing its biodiversity. As demonstrated by the results of this innovative method, namely the BioFlux microfluidic flow system, the decrease in the number of taxa in the digested samples and the addition of DEP contributed to the microbial adhesion in the microfluidic system and the formation of a stable biofilm.


Subject(s)
Diatomaceous Earth , Soil , Anaerobiosis , Bacteria/metabolism , Bioreactors/microbiology , Diatomaceous Earth/metabolism , Genetic Variation , Sewage/chemistry , Sewage/microbiology
6.
Materials (Basel) ; 14(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067572

ABSTRACT

This paper aims to compare, in vitro, the biomechanical properties of an overdenture retained by two bar-retained implants and an overdenture retained by two bar-retained implants with ball attachments. An edentulous mandible model was prepared for the study based on the FRASACO mold with two implants. In the first system, the "rider" type (PRECI-HORIX, CEKA) retention structure and the complete mandibular denture with the matrix were made. In the second system, the "rider" type retention suprastructure was also used. In the distal part, (CEKA) clips were placed symmetrically, and a complete mandibular denture, together with the matrix on the bar, and the clip patrices were made. A numerical model was developed for each system where all elements were positioned and related to geometric relations, as in reality. The FEA analysis (finite element analysis) was carried out for seven types of loads: with vertical forces of 20, 50, and 100 N and oblique forces of 20 and 50 N acting on individual teeth of the denture, namely central incisor, canine, and first molar. Displacements, stresses, and deformations within the systems were investigated. Maximum denture displacement in the first system was 0.7 mm. Maximum bar stress amounted to 27.528 MPa, and implant stress to 23.16 MPa. Maximum denture displacement in the second system was 0.6 mm. Maximum bar stress amounted to 578.6 MPa, that of clips was 136.99 MPa, and that of implants was 51.418 MPa. Clips cause smaller displacement of the overdenture when it is loaded but generate higher stress within the precision elements and implants compared to a denture retained only by a bar. Regardless of the shape of the precision element, small deformations occur that mainly affect the mucosa and the matrix.

7.
Polymers (Basel) ; 11(12)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842367

ABSTRACT

The aim of the article was to present the effects of lignin grafted with polyvinylpyrrolidone (PVP) as a microbial carrier in anaerobic co-digestion (AcoD) of cheese (CE) and wafer waste (WF). Individual samples of waste cheese and wafers were also tested. The PVP modifier was used to improve the adhesive properties of the carrier surface. Lignin is a natural biopolymer which exhibits all the properties of a good carrier, including nontoxicity, biocompatibility, porosity, and thermal stability. Moreover, the analysis of the zeta potential of lignin and lignin combined with PVP showed their high electrokinetic stability within a wide pH range, that is, 4-11. The AcoD process was conducted under mesophilic conditions in a laboratory by means of anaerobic batch reactors. Monitoring with two standard parameters: pH and the VFA/TA ratio (volatile fatty acids-to-total alkalinity ratio) proved that the process was stable in all the samples tested. The high share of N-NH4+ in TKN (total Kjeldahl nitrogen), which exceeded 90% for WF+CE and CE at the last phases of the process, proved the effective conversion of nitrogen forms. The microbiological analyses showed that eubacteria proliferated intensively and the dehydrogenase activity increased in the samples containing the carrier, especially in the system with two co-substrates (WF+CE/lignin) and in the waste cheese sample (CE/lignin). The biogas production increased from 1102.00 m3 Mg-1 VS (volatile solids) to 1257.38 m3 Mg-1 VS in the WF+CE/lignin sample, and from 881.26 m3 Mg-1 VS to 989.65 m3 Mg-1 VS in the CE/lignin sample. The research results showed that the cell immobilization on lignin had very positive effect on the anaerobic digestion process.

8.
Article in English | MEDLINE | ID: mdl-31500258

ABSTRACT

Self-Organising Feature Map (SOFM) neural models and the Learning Vector Quantization (LVQ) algorithm were used to produce a classifier identifying the quality classes of compost, according to the degree of its maturation within a period of time recorded in digital images. Digital images of compost at different stages of maturation were taken in a laboratory. They were used to generate an SOFM neural topological map with centres of concentration of the classified cases. The radial neurons on the map were adequately labelled to represent five suggested quality classes describing the degree of maturation of the composted organic matter. This enabled the creation of a neural separator classifying the degree of compost maturation based on easily accessible graphic information encoded in the digital images. The research resulted in the development of original software for quick and easy assessment of compost maturity. The generated SOFM neural model was the kernel of the constructed IT system.


Subject(s)
Artificial Intelligence , Composting/standards , Learning , Neural Networks, Computer , Algorithms , Software
9.
Molecules ; 24(1)2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30583475

ABSTRACT

It was the objective of this study to verify the efficiency and stability of anaerobic digestion (AD) for selected confectionery waste, including chocolate bars (CB), wafers (W), and filled wafers (FW), by inoculation with digested cattle slurry and maize silage pulp. Information in the literature on biogas yield for these materials and on their usefulness as substrate in biogas plants remains to be scarce. Owing to its chemical structure, including the significant content of carbon-rich carbohydrates and fat, the confectionery waste has a high biomethane potential. An analysis of the AD process indicates differences in the fluctuations of the pH values of three test samples. In comparison with W and FW, CB tended to show slightly more reduced pH values in the first step of the process; moreover an increase in the content of volatile fatty acids (VFA) was recorded. In the case of FW, the biogas production process showed the highest stability. Differences in the decomposition dynamics for the three types of test waste were accounted for by their different carbohydrate contents and also different biodegradabilities of specific compounds. The highest efficiency of the AD process was obtained for the filled wafers, where the biogas volumes, including methane, were 684.79 m³ Mg-1 VS and 506.32 m³ Mg-1 VS, respectively. A comparable volume of biogas (673.48 m³ Mg-1 VS) and a lower volume of methane (407.46 m³ Mg-1 VS) were obtained for chocolate bars. The lowest volumes among the three test material types, i.e., 496.78 m³ Mg-1 VS (biogas) and 317.42 m³ Mg-1 VS (methane), were obtained for wafers. This article also proposes a method of estimation of the biochemical methane potential (theoretical BMP) based on the chemical equations of degradation of sugar, fats, and proteins and known biochemical composition (expressed in grams).


Subject(s)
Anaerobiosis , Biodegradation, Environmental , Biofuels , Waste Products , Analysis of Variance , Bioreactors , Fermentation , Methane/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...