Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biol Futur ; 75(2): 219-233, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38416361

ABSTRACT

The grey maize weevil, Tanymecus dilaticollis, is a polyphagous species, which is among the most important pests of maize in Southeastern Europe. The efficacy of commercial products with two species of entomopathogenic nematodes (EPNs), Steinernema carpocapsae and Heterorhabditis bacteriophora, was investigated against adults of the grey maize weevil under laboratory conditions. Nemastar®, containing S. carpocapsae was more effective on T. dilaticollis adults than Nematop® containing H. bacteriophora, when applied uniformly to the surface of the soil, on Petri dishes containing T. dilaticollis adults. Results showed that S. carpocapsae rates of 83-333 infective juveniles/adult caused > 94% mortality in T. dilaticollis adults, whereas H. bacteriophora caused 27-61%, adult mortality, after exposure of insects to the commercial products of EPNs for 15 days. The infection rates of EPNs increased with concentration applied and ranged from 70-83% and 19-64% for Nemastar® and Nematop®, respectively. Subsequent field and semi-field tests were conducted with Nemastar® (application rate of 50 million S. carpocapsae per 100 m2) in maize crops with biological (mycoinsecticide Naturalis®, biofungicides and fertilizers) and chemical seed treatment (Gaucho® FS 600; active ingredient: imidacloprid) in Knezha, Bulgaria. Nematodes were found only in the dead specimens, in open plots and cages sprayed with the commercial nematode product. Nematode sprayings contributed for higher maize yields in the open maize plots in the fields with different seed treatments. We suggest that the use of powder formulation of S. carpocapsae in combination with biologically treated maize seeds can contribute to minimize the use of chemical insecticides against the grey maize weevil. The results obtained can be used as a base to further tests to ascertain the efficacy of EPNs products before they can be recommended for use in the integrated approach to T. dilaticollis management.


Subject(s)
Pest Control, Biological , Weevils , Animals , Weevils/parasitology , Pest Control, Biological/methods , Zea mays/parasitology , Nematoda/drug effects
2.
J Invertebr Pathol ; 124: 23-30, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25450951

ABSTRACT

The historic genus Pleistophora (Plistophora) is a highly polyphyletic clade with invertebrate Microsporidia reassigned to several new genera since the 1980s. Two genera, Endoreticulatus and Cystosporogenes, clearly separate into distinct but closely related clades based on small subunit ribosomal RNA analysis but are included in different families that are each polyphyletic. A microsporidium with morphology resembling the Endoreticulatus/Cystosporogenes clade was isolated from the grasshopper Poecilimon thoracicus from a site in Northwest Bulgaria. It produced intense infections in the digestive tract of the host but no behavioral changes were noted in infected individuals. Prevalence of the microsporidium increased over the active feeding season yearly. Mature spores were oval and measured 2.58±0.21 µm×1.34±0.24 µm, with 16 to approximately 32 spores in a parasitophorous vacuole. The spores were uninucleate and polar filament coils numbered 8-9 situated in a single row. The spore polaroplast consisted of an anterior lamellar section and a posterior vesicular section, and the posterior vacuole was reduced. Analyses of a 1221 bp partial SSU-rRNA sequence indicated that the isolate is more closely related to the Endoreticulatus clade than to Cystosporogenes, but shows earlier phylogenetic separation from species infecting Lepidoptera and represents a new species, Endoreticulatus poecilimonae. To compare sequences of Endoreticulatus spp. from Lepidoptera to those infecting other insect orders, an isolate, Microsporidium itiitiMalone (1985), described from the Argentine stem weevil, Listronotus bonariensis, was sequenced. Like the grasshopper isolate, the weevil isolate is closely related but basal to the lepidopteran Endoreticulatus clade. The original description combined with the new sequence data confirms species status and permits transfer of the isolate from Microsporidium, a genus erected for microsporidian species of uncertain taxonomic status, to Endoreticulatus.


Subject(s)
Grasshoppers/microbiology , Microsporidia, Unclassified/classification , Phylogeny , Animals , Base Sequence , Microsporidia, Unclassified/cytology , Microsporidia, Unclassified/genetics , Molecular Sequence Data , Species Specificity
3.
J Invertebr Pathol ; 105(1): 1-10, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20435042

ABSTRACT

Several species of microsporidia are important chronic pathogens of Lymantria dispar in Europe but have never been recovered from North American gypsy moth populations. The major issue for their introduction into North American L. dispar populations is concern about their safety to native non-target insects. In this study, we evaluated the susceptibility of sympatric non-target Lepidoptera to two species of microsporidia, Nosema lymantriae and Vairimorpha disparis, isolated from European populations of L. dispar and applied in field plots in Slovakia. Application of ultra low volume sprays of the microsporidia maximized coverage of infective spores in a complex natural environment and, thus, exposure of non-target species to the pathogens. Of 653 non-target larvae collected from plots treated with V. disparis in 2002, 18 individual larvae representing nine species in four families were infected. These plots were monitored for two subsequent seasons and V. disparis was not recovered from non-target species. Of 2571 non-target larvae collected in N. lymantriae-treated sites, one larva was found to be infected. Both species of microsporidia, particularly N. lymantriae, appear to have a very narrow host range in the field, even when an inundative technique is used for their introduction. V. disparis infections in L. dispar exceeded 40% of recovered larvae in the treated study sites; infection rates were lower in sites sprayed with N. lymantriae. Several naturally-occurring pathogens were recorded from the non-target species. The most common pathogen, isolated from 21 species in eight families, was a microsporidium in the genus Cystosporogenes.


Subject(s)
Host Specificity , Lepidoptera/microbiology , Microsporidia/pathogenicity , Nosema/pathogenicity , Animals , Larva/microbiology , Pest Control, Biological/methods , Slovakia
4.
J Eukaryot Microbiol ; 53(4): 292-304, 2006.
Article in English | MEDLINE | ID: mdl-16872297

ABSTRACT

Investigation of pathogens of populations of the gypsy moth, Lymantria dispar (L.) in Central and Eastern Europe revealed the existence of a microsporidium (Fungi: Microsporidia) of the genus Vairimorpha. The parasite produced three spore morphotypes. Internally infective spores are formed in the gut and adjacent muscle and connective tissue; single diplokaryotic spores and monokaryotic spores grouped by eight in sporophorous vesicles develop in the fat body tissues. The small subunit rDNA gene sequences of various isolates of the Vairimorpha microsporidia, obtained from L. dispar in various habitats in the investigated region, revealed their mutual identity. In phylogenetic analyses, the organism clustered with other L. dispar microsporidia that form only diplokaryotic spores in the sporogony cycle. The octospores of certain microsporidia infecting Lepidoptera that were previously described as Thelohania spp., have recently been shown to be one of the several spore morphotypes produced by species in the genus Vairimorpha. Because the description and drawings of a parasite described as Thelohania disparis by Timofejeva fit the characteristics of Vairimorpha, and all octospore-producing microsporidia collected from L. dispar since 1985 are genetically identical Vairimorpha species, it is believed that the parasite characterized here is identical to T. disparis Timofejeva 1956, and is herein redescribed, characterized, and transferred to the genus Vairimorpha as the new combination Vairimorpha disparis n. comb.


Subject(s)
Moths/microbiology , Thelohania/classification , Animals , Base Sequence , DNA, Ribosomal/genetics , Life Cycle Stages , Molecular Sequence Data , Phylogeny , Spores, Fungal/physiology , Spores, Fungal/ultrastructure , Thelohania/cytology , Thelohania/genetics , Thelohania/growth & development
5.
J Invertebr Pathol ; 93(2): 105-13, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16814805

ABSTRACT

The interactions in multiple species infections and effects on the horizontal transmission of three microsporidian species, Vairimorpha disparis, Nosema lymantriae and Endoreticulatus schubergi, infecting Lymantria dispar were evaluated in the laboratory. Simultaneous and sequential inoculations of host larvae were performed and the resulting infections were evaluated. Test larvae were exposed to the inoculated larvae to measure horizontal transmission. Dual species infections demonstrated interspecific competition between Nosema and Vairimorpha in the host larvae, but no observable competition occurred between Endoreticulatus and either of the other microsporidian species. Timing of inoculation was an important factor determining the outcome of competition between Nosema and Vairimorpha. The species inoculated first showed a higher rate of successful establishment; a time lag of 7 days between inoculations allowed the first species to essentially exclude the second. The microsporidia differed in efficiency of horizontal transmission. Nosema and Endoreticulatus were transmitted at very high rates, close to 100%. Horizontal transmission of Vairimorpha was less efficient, ranging from 25% to a maximum of 75%. The patterns of infection observed in inoculated larvae were reflected in the test larvae that acquired infections in the horizontal transmission experiments. Competition with Vairimorpha suppressed horizontal transmission of Nosema after simultaneous and sequential inoculation. In simultaneous inoculation experiments Endoreticulatus had no effect on transmission of Nosema and Vairimorpha.


Subject(s)
Disease Transmission, Infectious , Microsporidia/pathogenicity , Microsporidiosis/transmission , Moths/microbiology , Nosema/pathogenicity , Pansporablastina/pathogenicity , Animals , Disease Susceptibility/microbiology , Larva/microbiology , Microsporidiosis/veterinary , Pest Control, Biological/methods
6.
J Invertebr Pathol ; 91(2): 105-14, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16410011

ABSTRACT

A new microsporidian parasite Nosema chrysorrhoeae n. sp., isolated in Bulgaria from the browntail moth (Euproctis chrysorrhoea L.), is described. Its life cycle includes two sequential developmental cycles that are similar to the general developmental cycles of the Nosema-like microsporidia and are indistinguishable from those of two Nosema spp. from Lymantria dispar. The primary cycle takes place in the midgut tissues and produces binucleate primary spores. The secondary developmental cycle takes place exclusively in the silk glands and produces binucleate environmental spores. N. chrysorrhoeae is specific to the browntail moth. Phylogenetic analysis based on the ssu rRNA gene sequence places N. chrysorrhoeae in the Nosema/Vairimorpha clade, with the microsporidia from lymantriid and hymenopteran hosts. Partial sequences of the lsu rRNA gene and ITS of related species Nosema kovacevici (Purrini K., Weiser J., 1975. Natürliche Feinde des Goldafters, Euproctis chrysorrhoea L., im Gebiet von Kosovo, FSR Jugoslawien. Anzeiger fuer Schädlingskunde, Pflanzen-Umweltschutz, 48, 11-12), Nosema serbica Weiser, 1963 and Nosema sp. from Lymantria monacha was obtained and compared with N. chrysorrhoeae. The molecular data indicate the necessity of future taxonomic reevaluation of the genera Nosema and Vairimorpha.


Subject(s)
Moths/microbiology , Nosema/classification , Nosema/isolation & purification , Phylogeny , Animals , Bulgaria , DNA, Fungal/analysis , DNA, Fungal/genetics , DNA, Ribosomal/analysis , DNA, Ribosomal/genetics , Epithelial Cells/microbiology , Epithelial Cells/pathology , Epithelial Cells/ultrastructure , Genes, rRNA/genetics , Life Cycle Stages , Muscles/microbiology , Muscles/pathology , Muscles/ultrastructure , Nosema/genetics , Nosema/growth & development , Species Specificity
7.
J Invertebr Pathol ; 81(2): 103-13, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12445794

ABSTRACT

The outcome of mixed infection by three species of microsporidia in the genera Endoreticulatus, Nosema, and Vairimorpha, isolated from different populations of Lymantria dispar in Bulgaria, was evaluated in the laboratory. All possible combinations of two species were administered either simultaneously or sequentially to larvae, and mortality, duration of development, and larval weight at 20 days post-infection (simultaneous inoculation) or 23 days post-infection (sequential inoculation) were chosen as the outcome variables. Larvae were also dissected and the presence of each species of microsporidia and the tissues infected were recorded for each treatment. Effects of infection were dependent on both host sex and the type of exposure. Infected larvae were more likely to die than uninfected larvae, but there were no differences in mortality between single and mixed infections. Addition of Endoreticulatus to infections of Nosema or Vairimorpha significantly increased duration of development to the fourth ecdysis; this effect was additive. Addition of Nosema or Vairimorpha to an existing infection had no such effect. When Nosema was administered simultaneously with Endoreticulatus or Vairimorpha, infected larvae weighed more than larvae that had single infections with either pathogen. Nosema was displaced from the silk glands by Vairimorpha and Nosema suppressed octospore formation by Vairimorpha in fat body. The histological evidence combined with the data on larval weight supports the hypothesis that competition occurred in mixed infections.


Subject(s)
Microsporidia/parasitology , Microsporidia/pathogenicity , Moths/parasitology , Pest Control, Biological , Age Factors , Animals , Female , Larva/growth & development , Larva/parasitology , Male , Microsporidiosis/mortality , Microsporidiosis/parasitology , Moths/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...