Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Fitoterapia ; 177: 106120, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992475

ABSTRACT

Periodontitis is clinically characterized by destruction of the tooth support system and tooth loss. Porphyromonas gingivalis (Pg) plays a dominant role in periodontitis. Fractions and isolated compounds from an acetone-water extract of the roots of Limonium brasiliense (Lb) were tested in vitro for their anti-adhesive capacity against Pg on human KB buccal cells, influence on gingipains, the main virulence factors of Pg, and biofilm formation. Fractions EAF and FLB7 (50 µg/mL) reduced the bacterial adhesion of Pg to KB cells significantly (63 resp. 70%). The proanthocyanidin samarangenin A inhibited the adhesion (72%, 30 µM), samarangenin B (71%, 20 µM), and the flavan-3-ol epigallocatechin-3-O-gallate (79%, 30 µM). Fraction AQF, representing hydrophilic compounds, reduced the proteolytic activity of Arginin-specific gingipain (IC50 12.78 µg/mL). Fractions EAF and FLB7, characterized by lipohilic constituents, inhibited Arg-gingipain (IC50 3 µg/mL). On Lysine-specific gingipain, AQF has an IC50 15.89, EAF 14.15, and FLB7 6 µg/mL. The reduced bacterial adhesion is due to a strong interaction of proanthocyanidins with gingipains. AQF, EAF, and FLB7 significantly inhibited biofilm formation: IC50 11.34 (AQF), 11.66 (EAF), and 12.09 µg/mL (FLB7). In silico analysis indicated, that the polyphenols act against specific targets of Pg, not affecting mammalian cells. Therefore, Lb might be effective for prevention of periodontal disease by influencing virulence factors of Pg.

2.
Planta Med ; 89(11): 1074-1086, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35598603

ABSTRACT

Periodontal diseases are a global oral health problem affecting almost 10% of the global population. Porphyromonas gingivalis is one of the main bacteria involved in the initiation and progression of inflammatory processes as a result of the action of the cysteine proteases lysin- and arginine-gingipain. Surelease/polycarbophil microparticles containing a lyophilized proanthocyanidin-enriched fraction from the rhizomes of Limonium brasiliense, traditionally named "baicuru" (ethyl acetate fraction), were manufactured. The ethyl acetate fraction was characterized by UHPLC by the presence of samarangenins A and B (12.10 ± 0.07 and 21.05 ± 0.44%, respectively) and epigallocatechin-3-O-gallate (13.44 ± 0.27%). Physiochemical aspects of Surelease/polycarbophil microparticles were characterized concerning particle size, zeta potential, entrapment efficiency, ethyl acetate fraction release, and mucoadhesion. Additionally, the presence of the ethyl acetate fraction-loaded microparticles was performed concerning potential influence on viability of human buccal KB cells, P. gingivalis adhesion to KB cells, gingipain activity, and P. gingivalis biofilm formation. In general, all Surelease/polycarbophil microparticles tested showed strong adhesion to porcine cheek mucosa (93.1 ± 4.2% in a 30-min test), associated with a prolonged release of the ethyl acetate fraction (up to 16.5 ± 0.8% in 24 h). Preincubation of KB cells with Surelease/polycarbophil microparticles (25 µg/mL) resulted in an up to 93 ± 2% reduced infection rate by P. gingivalis. Decreased activity of the P. gingivalis-specific virulence factors lysin- and arginine-gingipain proteases by Surelease/polycarbophil microparticles was confirmed. Surelease/polycarbophil microparticles decreased biofilm formation of P. gingivalis (97 ± 2% at 60 µg/mL). Results from this study prove the promising activity of Surelease/polycarbophil microparticles containing ethyl acetate fraction microparticles as a prophylaxis strategy to prevent the recurrence of P. gingivalis.


Subject(s)
Plumbaginaceae , Proanthocyanidins , Humans , Animals , Swine , Gingipain Cysteine Endopeptidases , Porphyromonas gingivalis , Adhesins, Bacterial , Proanthocyanidins/pharmacology , Cysteine Endopeptidases , Plumbaginaceae/chemistry
3.
J Integr Bioinform ; 18(3)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34085494

ABSTRACT

Some species of cover crops produce phenolic compounds with allelopathic potential. The use of math, statistical and computational tools to analyze data obtained with spectrophotometry can assist in the chemical profile discrimination to choose which species and cultivation are the best for weed management purposes. The aim of this study was to perform exploratory and discriminant analysis using R package specmine on the phenolic profile of Secale cereale L., Avena strigosa L. and Raphanus sativus L. shoots obtained by UV-vis scanning spectrophotometry. Plants were collected at 60, 80 and 100 days after sowing and at 15 and 30 days after rolling in experiment in Brazil. Exploratory and discriminant analysis, namely principal component analysis, hierarchical clustering analysis, t-test, fold-change, analysis of variance and supervised machine learning analysis were performed. Results showed a stronger tendency to cluster phenolic profiles according to plant species rather than crop management system, period of sampling or plant phenologic stage. PCA analysis showed a strong distinction of S. cereale L. and A. strigosa L. 30 days after rolling. Due to the fast analysis and friendly use, the R package specmine can be recommended as a supporting tool to exploratory and discriminatory analysis of multivariate data.


Subject(s)
Crops, Agricultural , Secale , Cluster Analysis , Discriminant Analysis , Spectrophotometry, Ultraviolet
4.
Arch Microbiol ; 203(3): 1033-1038, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33140139

ABSTRACT

Association of rhizobia with other plant growth-promoting bacteria (PGPB), such as Azospirillum, have the potential to increase crop yields. This work aimed to assess how Rhizobium tropici and Azospirillum brasilense alone or in combination, affect the growth and yields of common bean grains (Phaseolus vulgaris L.). In a field experiment, R. tropici and A. brasilense were inoculated on seeds, alone or in combination, associated or not with foliar spraying of A. brasilense. Shoot biomass, nitrogen accumulation, thousand-grain weight, and grain yield were evaluated. Application of A. brasilense, on seed or by foliar spraying, and seed inoculation of R. tropici, had an additive effect, increasing biomass and accumulated nitrogen, thousand-grain weight, and grain yield.


Subject(s)
Azospirillum brasilense/physiology , Phaseolus/microbiology , Plant Leaves/microbiology , Rhizobium tropici/physiology , Seeds/microbiology , Biomass , Nitrogen/metabolism , Plant Development , Plant Leaves/growth & development
5.
Mar Pollut Bull ; 114(2): 831-836, 2017 Jan 30.
Article in English | MEDLINE | ID: mdl-27847170

ABSTRACT

Fossil fuels, e.g. gasoline and diesel oil, account for substantial share of the pollution that affects marine ecosystems. Environmental metabolomics is an emerging field that may help unravel the effect of these xenobiotics on seaweeds and provide methodologies for biomonitoring coastal ecosystems. In the present study, FTIR and multivariate analysis were used to discriminate metabolic profiles of Ulva lactuca after in vitro exposure to diesel oil and gasoline, in combinations of concentrations (0.001%, 0.01%, 0.1%, and 1.0% - v/v) and times of exposure (30min, 1h, 12h, and 24h). PCA and HCA performed on entire mid-infrared spectral window were able to discriminate diesel oil-exposed thalli from the gasoline-exposed ones. HCA performed on spectral window related to the protein absorbance (1700-1500cm-1) enabled the best discrimination between gasoline-exposed samples regarding the time of exposure, and between diesel oil-exposed samples according to the concentration. The results indicate that the combination of FTIR with multivariate analysis is a simple and efficient methodology for metabolic profiling with potential use for biomonitoring strategies.


Subject(s)
Environmental Monitoring/methods , Fuel Oils/analysis , Metabolome/drug effects , Ulva/drug effects , Brazil , Gasoline/analysis , Metabolomics , Models, Theoretical , Multivariate Analysis , Principal Component Analysis , Spectroscopy, Fourier Transform Infrared , Ulva/metabolism
6.
Chemosphere ; 156: 428-437, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27192480

ABSTRACT

Refined fuels have considerable share of pollution of marine ecosystems. Gasoline is one of the most consumed fuel worldwide, but its effects on marine benthic primary producers are poorly investigated. In this study, Ulva lactuca was chosen as a biological model due to its cosmopolitan nature and tolerance to high levels and wide range of xenobiotics and our goal was to evaluate the effects of gasoline on ultrastructure and metabolism of that seaweed. The experimental design consisted of in vitro exposure of U. lactuca to four concentrations of gasoline (0.001%, 0.01%, 0.1%, and 1.0%, v/v) over 30 min, 1 h, 12 h, and 24 h, followed by cytochemical, SEM, and biochemical analysis. Increase in the number of cytoplasmic granules, loss of cell turgor, cytoplasmic shrinkage, and alterations in the mucilage were some of the ultrastructural alterations observed in thalli exposed to gasoline. Decrease in carotenoid and polyphenol contents, as well as increase of soluble sugars and starch contents were associated with the time of exposure to the xenobiotic. In combination, the results revealed important morphological and biochemical alterations in the phenotype of U. lactuca upon acute exposure to gasoline. This seaweed contain certain metabolites assigned as candidates to biomarkers of the environmental stress investigated and it is thought to be a promise species for usage in coastal ecosystems perturbation monitoring system. In addition, the findings suggest that U. lactuca is able to metabolize gasoline hydrocarbons and use them as energy source, acting as bioremediator of marine waters contaminated by petroleum derivatives.


Subject(s)
Gasoline/toxicity , Seaweed/drug effects , Ulva/drug effects , Water Pollutants, Chemical/toxicity , Biodegradation, Environmental , Carotenoids/metabolism , Polyphenols/metabolism , Seaweed/metabolism , Seaweed/ultrastructure , Starch/metabolism , Ulva/metabolism , Ulva/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...