Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Pharm Ther ; 43(3): 385-392, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29377194

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: The immunosuppressive drugs used in solid organ transplantation or autoimmunological processes were studied by electron paramagnetic resonance (EPR) spectroscopy to estimate their free radical scavenging activity. The interactions of immunosuppressants with free radicals were examined by an X-band (9.3 GHz) EPR spectroscopy and a model of DPPH free radicals. METHODS: The EPR spectra of DPPH and DPPH interacting with individual drugs were compared. Kinetic studies were performed, and the effect of ultraviolet (UV) irradiation on the free radical scavenging activity of the tested drugs was determined. RESULTS AND DISCUSSION: The free radical scavenging activity of non-irradiated drugs decreased in the order: rapamycin > mycophenolate mofetil > ciclosporin > tacrolimus. UV irradiation increased the free radical scavenging activity of all the tested immunosuppressive drugs, and the effect was highest for tacrolimus. For the non-irradiated samples, the speed of free radical interactions decreased in the order: ciclosporin > tacrolimus > mycophenolate mofetil > rapamycin. UV irradiation only slightly affected the speed of interactions of the immunosuppressive drugs with the model DPPH free radicals. WHAT IS NEW AND CONCLUSION: Electron paramagnetic resonance spectroscopy is useful for obtaining information on interactions of immunosuppressive drugs with free radicals. We hypothesized that the long-term immunosuppressive effects of these drugs after transplantation or during autoimmune disorders may be mediated by anti-inflammatory action in addition to the known receptor/cell cycle inhibition.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Free Radical Scavengers/pharmacology , Immunosuppressive Agents/pharmacology , Free Radicals/metabolism , Kinetics , Lung Transplantation , Ultraviolet Rays
2.
Phys Rev Lett ; 99(8): 087201, 2007 Aug 24.
Article in English | MEDLINE | ID: mdl-17930975

ABSTRACT

The 1H NMR spectrum and nuclear relaxation rate T(1)(-1) in the antiferromagnetic wheel CsFe8 were measured to characterize the previously observed magnetic field-induced low-temperature phase around the level crossing at 8 T. The data show that the phase is characterized by a huge staggered transverse polarization of the electronic Fe spins, and the opening of a gap, providing microscopic evidence for the interpretation of the phase as a field-induced magnetoelastic instability.


Subject(s)
Cold Temperature , Magnetic Fields , Magnetic Resonance Spectroscopy
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 58(10): 2257-64, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12212751

ABSTRACT

Electron spin resonance (ESR) examinations of human retinal pigment epithelium melanosomes isolated from eyes of young and old donors were carried out. The examined ESR signal was a single line, which is characteristic for free radicals of eumelanin o-semiquinones. The content of free radicals related to melanosomes dry weight for samples from older donors (ages over 45 years) were higher than for sample from younger donors (between 14 and 22 years). Simultaneously, the content of free radicals calculated for one melanosome is constant and does not depend on age. The homogeneous broadening of the recorded ESR lines shows that there are no isolated spin packets in all investigated melanin samples. Slow spin-lattice (T1 approximately 10(-5) s) and fast spin-spin (T2 approximately 10(-8) s) relaxation processes occur in these samples. Saturation of the ESR lines at low microwave power was measured. High concentration of free radicals in melanosome samples was responsible for the fast spin-spin relaxation process.


Subject(s)
Melanosomes/ultrastructure , Pigment Epithelium of Eye/growth & development , Pigment Epithelium of Eye/ultrastructure , Adolescent , Adult , Age Factors , Electron Spin Resonance Spectroscopy/methods , Free Radicals/analysis , Humans , Middle Aged
4.
J Magn Reson ; 145(1): 62-72, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10873497

ABSTRACT

Electron paramagnetic resonance searches of thermally excited multiplet states in macerals, exinite, vitrinite, and inertinite of Polish medium-rank coal (85.6 wt% C), were performed. Numerical analysis of lineshape indicates a multicomponent structure of the EPR spectra of macerals heated at 300 degrees and 650 degrees C. EPR spectra of exinite and vitrinite are a superposition of broad Gauss, broad Lorentz (Lorentz 1), and narrow Lorentz (Lorentz 3) lines. Two narrow Lorentz (Lorentz 2 and Lorentz 3) lines were observed in the resonance absorption curves of inertinite. The influence of the measuring temperature (100-300 K) on the EPR lines of the macerals was also studied. The experimentally obtained temperature dependence of the EPR line intensities were fitted by the theoretical functions characteristic for paramagnetic centers with ground doublet state (S = 12) and paramagnetic centers with thermally excited triplet (S = 1) and quadruplet (S = 32) states. Thermally excited multiplet states were found in exinite and vitrinite. Both paramagnetic centers with doublet ground state (S = 12) and paramagnetic centers with thermally excited states, probably quadruplet states (S = 32), exist in the group of paramagnetic centers of exinite and vitrinite with the broad Lorentz 1 lines. Intensities (I) of the broad Gauss and the narrow Lorentz 3 lines of exinite and vitrinite changes with temperature according to the Curie law (I = C/T). The existence of thermally excited multiplet states was not stated for inertinite. The two groups of paramagnetic centers of inertinite with Lorentz 2 and Lorentz 3 lines obey the Curie law. Copyright 2000 Academic Press.

5.
J Biomater Sci Polym Ed ; 7(9): 781-93, 1996.
Article in English | MEDLINE | ID: mdl-8773882

ABSTRACT

The purpose of the present study was to examine semiconductor properties of synthetic DOPA melanin, which are basic for future biological applications. DC conductivity, electron spin resonance (ESR), and atomic absorption spectroscopy (AAS) measurements have been performed to investigate the effect of Cu(2+)-ions on the semiconductor properties of melanin polymer synthesized from DOPA (3,4-dihydroxyphenylalanine). DOPA melanin - Cu2+ complexes examined show the decrease of both thermal activation energy delta Ea and pre-exponential factor sigma o values upon doping. At the same time no substantial changes in conductivity at 293 K have been observed. Formation of bipolaron states due to chelation of copper ions by melanin orthosemiquinones has been postulated. The Meyer-Neldel rule with a characteristic temperature T0 equal to 298 K and possible physiological implication of this fact are discussed. These data suggest, that DOPA melanin polymer could be useful as a type of culture substratum.


Subject(s)
Biopolymers , Calcium , Copper/chemistry , Dihydroxyphenylalanine/analogs & derivatives , Copper Sulfate/chemistry , Dihydroxyphenylalanine/chemistry , Electric Conductivity , Electrochemistry , Electron Spin Resonance Spectroscopy , Kinetics , Molecular Structure , Oxidation-Reduction , Spectrophotometry, Atomic , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...