Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1271800, 2023.
Article in English | MEDLINE | ID: mdl-38090590

ABSTRACT

Introduction: Current multistep methods utilized for preparing and cryopreserving single-cell suspensions from blood samples for single-cell RNA sequencing (scRNA-seq) are time-consuming, requiring trained personnel and special equipment, so limiting their clinical adoption. We developed a method, Simple prEservatioN of Single cElls (SENSE), for single-step cryopreservation of whole blood (WB) along with granulocyte depletion during single-cell assay, to generate high quality single-cell profiles (SCP). Methods: WB was cryopreserved using the SENSE method and peripheral blood mononuclear cells (PBMCs) were isolated and cryopreserved using the traditional density-gradient method (PBMC method) from the same blood sample (n=6). The SCPs obtained from both methods were processed using a similar pipeline and quality control parameters. Further, entropy calculation, differential gene expression, and cellular communication analysis were performed to compare cell types and subtypes from both methods. Results: Highly viable (86.3 ± 1.51%) single-cell suspensions (22,353 cells) were obtained from the six WB samples cryopreserved using the SENSE method. In-depth characterization of the scRNA-seq datasets from the samples processed with the SENSE method yielded high-quality profiles of lymphoid and myeloid cell types which were in concordance with the profiles obtained with classical multistep PBMC method processed samples. Additionally, the SENSE method cryopreserved samples exhibited significantly higher T-cell enrichment, enabling deeper characterization of T-cell subtypes. Overall, the SENSE and PBMC methods processed samples exhibited transcriptional, and cellular communication network level similarities across cell types with no batch effect except in myeloid lineage cells. Discussion: Comparative analysis of scRNA-seq datasets obtained with the two cryopreservation methods i.e., SENSE and PBMC methods, yielded similar cellular and molecular profiles, confirming the suitability of the former method's incorporation in clinics/labs for cryopreserving and obtaining high-quality single-cells for conducting critical translational research.


Subject(s)
Cryopreservation , Leukocytes, Mononuclear , Cryopreservation/methods , Quality Control
2.
Nat Commun ; 13(1): 181, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013299

ABSTRACT

Diabetic foot ulceration (DFU) is a devastating complication of diabetes whose pathogenesis remains incompletely understood. Here, we profile 174,962 single cells from the foot, forearm, and peripheral blood mononuclear cells using single-cell RNA sequencing. Our analysis shows enrichment of a unique population of fibroblasts overexpressing MMP1, MMP3, MMP11, HIF1A, CHI3L1, and TNFAIP6 and increased M1 macrophage polarization in the DFU patients with healing wounds. Further, analysis of spatially separated samples from the same patient and spatial transcriptomics reveal preferential localization of these healing associated fibroblasts toward the wound bed as compared to the wound edge or unwounded skin. Spatial transcriptomics also validates our findings of higher abundance of M1 macrophages in healers and M2 macrophages in non-healers. Our analysis provides deep insights into the wound healing microenvironment, identifying cell types that could be critical in promoting DFU healing, and may inform novel therapeutic approaches for DFU treatment.


Subject(s)
Diabetes Mellitus/genetics , Diabetic Foot/genetics , Fibroblasts/metabolism , Macrophages/metabolism , Transcriptome , Wound Healing/genetics , Biomarkers/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Chitinase-3-Like Protein 1/genetics , Chitinase-3-Like Protein 1/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology , Diabetic Foot/metabolism , Diabetic Foot/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Fibroblasts/pathology , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Keratinocytes/metabolism , Keratinocytes/pathology , Leukocytes/metabolism , Leukocytes/pathology , Macrophages/pathology , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 11/genetics , Matrix Metalloproteinase 11/metabolism , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , Single-Cell Analysis/methods , Skin/metabolism , Skin/pathology , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...