Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Mol Neurobiol ; 60(11): 6316-6329, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37452223

ABSTRACT

A brief period of transient global brain ischemia leads to selective ischemic neurodegeneration associated with death of hippocampal CA1 pyramidal neurons days after reperfusion. The mechanism of such selective and delayed neurodegeneration is still uncertain. Our work aimed to study the involvement of proteasomal and endoplasmic reticulum (ER) stress in ischemic neurodegeneration. We have performed laser scanning confocal microscopy analysis of brain slices from control and experimental animals that underwent global brain ischemia for 15 min and varying times of reperfusion. We have focused on ubiquitin, PUMA, a proapoptotic protein of the Bcl-2 family overexpressed in response to both proteasomal and ER stress, and p53, which controls expression of PUMA. We have also examined the expression of HRD1, an E3 ubiquitin ligase that was shown to be overexpressed after ER stress. We have also examined potential crosstalk between proteasomal and ER stress using cellular models of both proteasomal and ER stress. We demonstrate that global brain ischemia is associated with an appearance of distinct immunoreactivity of ubiquitin, PUMA and p53 in pyramidal neurons of the CA1 layer of the hippocampus 72 h after ischemic insults. Such changes correlate with a delay and selectivity of ischemic neurodegeneration. Immunoreactivity of HRD1 observed in all investigated regions of rat brain was transiently absent in both CA1 and CA3 pyramidal neurones 24 h after ischemia in the hippocampus, which does not correlate with a delay and selectivity of ischemic neurodegeneration. We do not document significant crosstalk between proteasomal and ER stress. Our results favour dysfunction of the ubiquitin proteasome system and consequent p53-induced expression of PUMA as the main mechanisms responsible for selective and delayed degeneration of pyramidal neurons of the hippocampal CA1 layer in response to global brain ischemia.

2.
Bratisl Lek Listy ; 123(4): 236-243, 2022.
Article in English | MEDLINE | ID: mdl-35294208

ABSTRACT

BACKGROUND: Glioblastoma (GB) is the most common and biologically the most aggressive primary brain tumor of the central nervous system (CNS) in adults. Standard treatment for newly diagnosed GB consists of surgical resection, radiotherapy, and chemotherapy with temozolomide (TMZ). Despite numbers of studies, a resistance to chemotherapy is the major obstacle to successful GB treatment. OBJECTIVES: The aim of our study was to detect the sensitivity of glioblastoma T98G cells to TMZ treatment and subsequently to determine the expression changes of apoptosis-associated genes in glioblastoma cells. MATERIAL AND METHODS: The human glioblastoma cell line (T98G) was treated with specified concentrations of TMZ during different time periods. Their viability was measured by colorimetric MTT assay and the activation of the apoptotic pathway was determined by measuring the caspase 3/7 activity. Commercial pre-designed microfluidic array was used to quantify expression of human apoptosis-associated genes. RESULTS: The untreated control of T98G cell line against human brain total RNA standards reported significant changes in several apoptotic genes expression levels. We identified also a deregulation in geneexpression levels between the TMZ treated and untreated T98G cells associated with apoptotic pathways. After 48 hours of exposure of T98G cells to TMZ, we observed a significant deregulation ofseven genes: BBC3, BCL2L1, RIPK1, CASP3, BIRC2, CARD6 and DAPK1. These results can contribute to the importance of apoptosis in glioblastoma cells metabolism and effect of TMZ treatment. CONCLUSIONS: Identification of apoptotic gene panel in T98G cell line could help to improve understanding of brain tumor cells metabolism. Recognizing of the pro-apoptotic and anti-apoptotic genes expression changes could contribute to clarify the sensitivity to TMZ therapy and molecular base in healthy and tumor cells (Tab. 1, Fig. 2, Ref. 48).


Subject(s)
Glioblastoma , Apoptosis , Cell Line, Tumor , Cell Survival , Gene Expression , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use
3.
Int J Mol Sci ; 20(19)2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31546642

ABSTRACT

Gene SLC41A1 (A1) is localized within Parkinson's disease-(PD)-susceptibility locus PARK16 and encodes for the Na+/Mg2+-exchanger. The association of several A1 SNPs with PD has been studied. Two, rs11240569 and rs823156, have been associated with reduced PD-susceptibility primarily in Asian populations. Here, we examined the association of rs11240569, rs708727, and rs823156 with PD in the Slovak population and their power to discriminate between PD patients and healthy controls. The study included 150 PD patients and 120 controls. Genotyping was performed with the TaqMan® approach. Data were analyzed by conventional statistics and Random Forest machine-learning (ML) algorithm. Individually, none of the three SNPs is associated with an altered risk for PD-onset in Slovaks. However, a combination of genotypes of SNP-triplet GG(rs11240569)/AG(rs708727)/AA(rs823156) is significantly (p < 0.05) more frequent in the PD (13.3%) than in the control (5%) cohort. ML identified the power of the tested SNPs in isolation or of their singlets (joined), duplets and triplets to discriminate between PD-patients and healthy controls as zero. Our data further substantiate differences between diverse populations regarding the association of A1 polymorphisms with PD-susceptibility. Lack of power of the tested SNPs to discriminate between PD and healthy cases render their clinical/diagnostic relevance in the Slovak population negligible.


Subject(s)
Cation Transport Proteins/genetics , Parkinson Disease/genetics , Adult , Aged , Aged, 80 and over , Cation Transport Proteins/blood , Cohort Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Machine Learning , Male , Middle Aged , Polymorphism, Single Nucleotide , Slovakia , Young Adult
4.
Int J Mol Med ; 43(6): 2420-2428, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31017259

ABSTRACT

Mitochondria are crucial for neuronal cell survival and death through their functions in ATP production and the intrinsic pathway of apoptosis. Mitochondrial dysfunction is considered to play a central role in several serious human diseases, including neurodegenerative diseases, such as Parkinson's and Alzheimer's disease and ischemic neurodegeneration. The aim of the present study was to investigate the impact of transient global brain ischemia on the expression of selected proteins involved in mitochondrial dynamics and mitochondria­associated membranes. The main foci of interest were the proteins mitofusin 2 (Mfn2), dynamin­related protein 1 (DRP1), voltage­dependent anion­selective channel 1 (VDAC1) and glucose­regulated protein 75 (GRP75). Western blot analysis of total cell extracts and mitochondria isolated from either the cerebral cortex or hippocampus of experimental animals was performed. In addition, Mfn2 was localized intracellularly by laser scanning confocal microscopy. It was demonstrated that 15­min ischemia, or 15­min ischemia followed by 1, 3, 24 or 72 h of reperfusion, was associated with a marked decrease of the Mfn2 protein in mitochondria isolated from the cerebral cortex, but not in hippocampal mitochondria. Moreover, a translocation of the Mfn2 protein to the cytoplasm was documented immediately after global brain ischemia in the neurons of the cerebral cortex by laser scanning confocal microscopy. Mfn2 translocation was followed by decreased expression of Mfn2 during reperfusion. Markedly elevated levels of the VDAC1 protein were also documented in total cell extracts isolated from the hippocampus of rats after 15 min of global brain ischemia followed by 3 h of reperfusion, and from the cerebral cortex of rats after 15 min of global brain ischemia followed by 72 h of reperfusion. The mitochondrial Mfn2 release observed during the early stages of reperfusion may thus represent an important mechanism of mitochondrial dysfunction associated with neuronal dysfunction or death induced by global brain ischemia.


Subject(s)
Brain Ischemia/pathology , Cerebral Cortex/pathology , Hippocampus/pathology , Membrane Proteins/analysis , Mitochondria/pathology , Mitochondrial Proteins/analysis , Animals , GTP Phosphohydrolases , Male , Rats , Rats, Wistar
5.
Magnes Res ; 32(3): 63-71, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-32162607

ABSTRACT

BACKGROUND: Low magnesium (Mg) levels are linked to many diseases. Studies suggest that organic salts of Mg are more readily bioavailable than its oxide or inorganic salts used for supplements production. Unfortunately, the plethora of variables in the previous study designs complicates the making of any clear and reliable conclusions. METHODS: 14 healthy males were supplemented for five days with 400 mg Mg to saturate Mg pools before intake of the test products. Bioavailability of 400 mg Mg from Mg citrate (MgC) and Mg oxide (MgO) after single-dose administration was assessed by measuring renal Mg excretion in 24-h urine and blood plasma [Mg] at time points 0, 2, 4, 8, and 24 h. RESULTS: Single-dose MgC supplementation led to a significant (P < 0.05) increase in 24 h urinary Mg excretion, but this was not significant following MgO. Plasma [Mg] was also significantly higher for MgC than for MgO at 4 h (P < 0.05) and 8 h (P < 0.05). Compared with baseline levels, MgC supplementation showed a significant increase in plasma [Mg] at all time points, in contrast to MgO. CONCLUSIONS: MgC shows higher bioavailability compared with MgO. Furthermore, urinary Mg excretion should be determined as the primary endpoint of Mg bioavailability studies.


Subject(s)
Citric Acid/urine , Magnesium Oxide/urine , Magnesium/urine , Organometallic Compounds/urine , Adult , Biological Availability , Citric Acid/pharmacokinetics , Cross-Over Studies , Healthy Volunteers , Humans , Magnesium/administration & dosage , Magnesium/pharmacokinetics , Magnesium Oxide/pharmacokinetics , Male , Middle Aged , Organometallic Compounds/pharmacokinetics , Young Adult
6.
Neurol Res ; 41(2): 177-188, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30475171

ABSTRACT

OBJECTIVES: We have investigated the impact of endoplasmic reticulum (ER) stress, which is often implicated in neurodegenerative diseases, on the expression of Hrd1, an E3 ubiquitin ligase that plays a central role in the process of ER-associated degradation (ERAD). METHODS: SH-SY5Y neuroblastoma cells, a frequently used model for studying neurotoxicity in dopaminergic neurons and the mechanisms of neurodegeneration associated with Parkinson's disease, and parental SK-N-SH cells were studied. RESULTS: We demonstrate that ER stress, induced by thapsigargin or tunicamycin, correlates with the increased expression of Hrd1 in both SH-SY5Y and SK-N-SH cells. Inhibition of PERK does not significantly suppress the thapsigargin- or tunicamycin-induced expression of Hrd1. Nevertheless, PERK inhibition has a positive effect on the survival of SH-SY5Y cells treated with thapsigargin but not on those treated with tunicamycin. Inhibition of IRE1 associated with the inhibition of XBP1 splicing does not affect the survival of SH-SY5Y cells treated with either thapsigargin or tunicamycin but results in the complete suppression of both the thapsigargin- and tunicamycin-induced expression of Hrd1. DISCUSSION: Thus, the ER-stress-induced expression of Hrd1 in SH-SY5Y depends on Hrd1 transcription activation, which is a consequence of IRE1 but not of PERK activation.


Subject(s)
Anti-Infective Agents/pharmacology , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Enzyme Inhibitors/pharmacology , Neurodegenerative Diseases/metabolism , Protein Serine-Threonine Kinases/metabolism , Thapsigargin/pharmacology , Tunicamycin/pharmacology , Ubiquitin-Protein Ligases/metabolism , eIF-2 Kinase/metabolism , Cell Line, Tumor , Humans
7.
Rev Physiol Biochem Pharmacol ; 176: 65-105, 2019.
Article in English | MEDLINE | ID: mdl-30406297

ABSTRACT

Magnesium research has boomed within the last 20 years. The real breakthrough came at the start of the new millennium with the discovery of a plethora of possible Mg homeostatic factors that, in particular, included putative Mg2+ transporters. Until that point, Mg research was limited to biochemical and physiological work, as no target molecular entities were known that could be used to explore the molecular biology of Mg homeostasis at the level of the cell, tissue, organ, or organism and to translate such knowledge into the field of clinical medicine and pharmacology. Because of the aforementioned, Mg2+ and Mg homeostasis, both of which had been heavily marginalized within the biomedical field in the twentieth century, have become overnight a focal point of many studies ranging from primary biomedical research to translational medicine.The amount of literature concerning cellular Mg2+ transport and cellular Mg homeostasis is increasing, together with a certain amount of confusion, especially about the function(s) of the newly discovered and, in the majority of instances, still only putative Mg2+ transporters/Mg2+ homeostatic factors. Newcomers to the field of Mg research will thus find it particularly difficult to orient themselves.Here, we briefly but critically summarize the status quo of the current understanding of the molecular entities behind cellular Mg2+ homeostasis in mammalian/human cells other than TRPM6/7 chanzymes, which have been universally accepted as being unspecific cation channel kinases allowing the flux of Mg2+ while constituting the major gateway for Mg2+ to enter the cell.


Subject(s)
Magnesium/metabolism , TRPM Cation Channels/metabolism , Animals , Homeostasis , Humans , Protein Serine-Threonine Kinases
8.
Gen Physiol Biophys ; 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30338762

ABSTRACT

The aim our study was to investigate protective effect of cobalt chloride (CoCl2) in the model of proteasome stress of neuroblastoma SH-SY5Y cells induced by bortezomib, an inhibitor of 26S proteasome. We have focused our interests on Hsp70 and activation of caspase 3. Finally, we have compared the effect of CoCl2 with an effect of the pre-treatment of the cells with 17-AAG, an inhibitor of Hsp90 that is capable to induce expression of Hsp70, or with IOX2, an inhibitor of isoform 2 of prolyl hydroxylase that increases stability of hypoxia inducible factor 1α (HIF1α). Pre-treatment of SH-SY5Y cells for 24 h with CoCl2, at concentrations of 150 or 250 µmol/l, and with 17-AAG at concentration 1 µmol/l but not with IOX2 at concentration 100 µmol/l, was associated with significantly increased expression of Hsp70. We have shown that pre-treatment of SH-SY5Y cells with CoCl2 but not with 17-AAG or IOX2 was associated with significant delay of the cell death induced by proteasome stress. CoCl2-mediated effect was consistent with inhibition of bortezomib-induced caspase 3 activation in the cells pre-treated with CoCl2. Despite established neuroprotective properties of Hsp70 our results do not provide strong evidence that the effect of CoCl2 could be mainly attributed to the ability of CoCl2 to induce expression of Hsp70 and other mechanisms have to be considered.

9.
Oncotarget ; 9(4): 5084-5104, 2018 Jan 12.
Article in English | MEDLINE | ID: mdl-29435164

ABSTRACT

The Na+/Mg2+ exchanger SLC41A1 (A1), a key component of intracellular Mg homeostasis (IMH), is the major cellular Mg2+ efflux system, and its overexpression decreases [Mg2+]intracellular. IMH plays an important role in the regulation of many cellular processes, including cellular signaling. However, whether the overexpression of A1 and the consequent drop of [Mg2+]i impact on intracellular signaling is unknown. To examine the latter, we utilized dynamic mass redistribution (DMR) assay, PathScan® RTK signaling antibody (PRSA) array, confirmatory Western blot (WB) analyses of phosphorylation of kinases selected by PRSA, and mag-fura 2-assisted fast filter spectrometry (FFS). We demonstrate here that the overexpression of A1 quantitatively and qualitatively changes the DMR signal evoked by the application of PAR-1-selective activating peptide and/or by changing [Mg2+]extracellular in HEK293 cells. PRSA profiling of the phosphorylation of important signaling nodes followed by confirmatory WB has revealed that, in HEK293 cells, A1 overexpression significantly attenuates the phosphorylation of Akt/PKB on Thr308 and/or Ser473 and of Erk1/2 on Thr202/Tyr204 in the presence of 0 or 1 mM (physiological) Mg2+ in the bath solution. The latter is also true for SH-SY5Y and HeLa cells. Overexpression of A1 in HEK293 cells significantly lowers [Mg2+]i in the presence of [Mg2+]e = 0 or 1 mM. This correlates with the observed attenuation of prosurvival Akt/PKB - Erk1/2 signaling in these cells. Thus, A1 expression status and [Mg2+]e (and consequently also [Mg2+]i) modulate the complex physiological fingerprint of the cell and influence the activity of kinases involved in anti-apoptotic and, hence, pro-survival events in cells.

10.
Biomed Pharmacother ; 99: 51-58, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29324312

ABSTRACT

Long non-coding RNAs (lncRNAs) are DNA transcripts longer than 200 nucleotides without protein-coding potential. As they are key regulators of gene expression at chromatic, transcriptional and posttranscriptional level, they play important role in various biological and pathological processes. Dysregulation of lncRNAs has been observed in several diseases including cancer. Breast cancer is heterogeneous disease with many molecular subtypes specific in different prognosis and treatment responses. Hypoxia, a common micro-environmental feature of rapidly growing tumour is associated with metastases, recurrences and resistance to therapy. Aberrant expression of hypoxia related lncRNAs significantly correlates with poor outcomes in cancer patients, as the lncRNAs play an important regulatory role in the breast cancer-cell survival. Thus, a better understanding of lncRNAs role in the hypoxic conditions of breast cancer is crucial for precise understanding of the tumorigenesis, disease features and poor clinical outcome, especially in highly aggressive breast cancer subtypes (HER2-positive and triple-negative types). Moreover, lncRNAs may represent tumour marker predicting prognosis and therapeutic targets improving precise and personalized therapy for better patient´s survival. In this review, we summarize the recent information on lncRNAs in breast cancer with special focus on the hypoxia-responsive lncRNAs and their potential impact on the prognosis, therapy algorithms and individual outcomes. Presented data helps in better understanding of the specific mechanisms predicting new therapeutic agents and strategies for the pharmacological intervention.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , RNA, Long Noncoding/metabolism , Breast Neoplasms/therapy , Cell Hypoxia/genetics , Clinical Trials as Topic , Female , Humans , RNA, Long Noncoding/genetics
11.
Oxid Med Cell Longev ; 2017: 6797460, 2017.
Article in English | MEDLINE | ID: mdl-28757913

ABSTRACT

Mg2+ is an essential mineral with pleotropic impacts on cellular physiology and functions. It acts as a cofactor of several important enzymes, as a regulator of ion channels such as voltage-dependent Ca2+ channels and K+ channels and on Ca2+-binding proteins. In general, Mg2+ is considered as the main intracellular antagonist of Ca2+, which is an essential secondary messenger initiating or regulating a great number of cellular functions. This review examines the effects of Mg2+ on mitochondrial functions with a particular focus on energy metabolism, mitochondrial Ca2+ handling, and apoptosis.


Subject(s)
Apoptosis , Energy Metabolism , Magnesium/metabolism , Mitochondria/metabolism , Animals , Calcium Channels/metabolism , Humans , Mitochondrial Proteins/metabolism , Potassium Channels/metabolism
12.
Neurochem Res ; 42(11): 3170-3185, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28725954

ABSTRACT

Overload or dysfunction of ubiquitin-proteasome system (UPS) is implicated in mechanisms of neurodegeneration associated with neurodegenerative diseases, e.g. Parkinson and Alzheimer disease, and ischemia-reperfusion injury. The aim of this study was to investigate the possible association between viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells treated with bortezomib, inhibitor of 26S proteasome, and accumulation of ubiquitin-conjugated proteins with respect to direct cytotoxicity of aggregates of ubiquitin-conjugated proteins. Bortezomib-induced death of SH-SY5Y cells was documented after 24 h of treatment while death of T98G cells was delayed up to 48 h. Already after 4 h of treatment of both SH-SY5Y and T98G cells with bortezomib, increased levels of both ubiquitin-conjugated proteins with molecular mass more than 150 kDa and Hsp70 were observed whereas Hsp90 was elevated in T98G cells and decreased in SH-SY5Y cells. With respect to the cell death mechanism, we have documented bortezomib-induced activation of caspase 3 in SH-SY5Y cells that was probably a result of increased expression of pro-apoptotic proteins, PUMA and Noxa. In T98G cells, bortezomib-induced expression of caspase 4, documented after 24 h of treatment, with further activation of caspase 3, observed after 48 h of treatment. The delay in activation of caspase 3 correlated well with the delay of death of T98G cells. Our results do not support the possibility about direct cytotoxicity of aggregates of ubiquitin-conjugated proteins. They are more consistent with a view that proteasome inhibition is associated with both transcription-dependent and -independent changes in expression of pro-apoptotic proteins and consequent cell death initiation associated with caspase 3 activation.


Subject(s)
Caspase 3/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Antineoplastic Agents/toxicity , Bortezomib/toxicity , Cell Death/drug effects , Cell Death/physiology , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans
13.
Gen Physiol Biophys ; 36(5): 539-547, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29372687

ABSTRACT

Colorectal carcinoma (CRC) that represents one of the major causes for cancer-related death in humans is often associated with over-expression of anti-apoptotic proteins of Bcl-2 family. The aim of presented study was to determine the effect of ABT-737 inhibitor of anti-apoptotic proteins Bcl-2, Bcl-XL and Bcl-w as well as cyclin-dependent kinase 2 (CDK2) inhibitor SU9516 alone and in combination with ABT-737 on survival of colorectal cell lines HT29 and Caco-2. We have shown that both Caco-2 and HT29 cells that are relatively resistant to ABT-737 are also partially sensitive to SU9516, which increased sensitivity of Caco-2 but not HT29 cells to ABT-737. Increased sensitivity of Caco-2 cells to ABT-737 after addition of SU9516 correlated well with SU9516-induced decrease of Mcl-1 expression while we have not observed downregulation of Mcl-1 after the treatment of HT29 cells with SU9516. Instead of this, we have shown that treatment of HT29 cells with SU9516 is associated with decreased expression of tumour suppressor protein p53. Our findings provide a rationale for clinical use of Bcl-2 family inhibitors in combination with CDK2 inhibitors for treatment of Mcl-1-dependent colorectal tumours associated with expression of Bcl-2, Bcl-XL and Bcl-w proteins. In addition, we have shown potential of CDK2 inhibitors for treatment of tumours expressing R273H mutant p53.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Biphenyl Compounds/administration & dosage , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/enzymology , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Imidazoles/administration & dosage , Indoles/administration & dosage , Nitrophenols/administration & dosage , Sulfonamides/administration & dosage , Apoptosis/drug effects , BH3 Interacting Domain Death Agonist Protein/chemistry , Biphenyl Compounds/chemistry , Caco-2 Cells , Cell Survival/drug effects , Colorectal Neoplasms/pathology , Dose-Response Relationship, Drug , Drug Synergism , HT29 Cells , Humans , Nitrophenols/chemistry , Piperazines/administration & dosage , Piperazines/chemistry , Sulfonamides/chemistry , Treatment Outcome
14.
Oncol Rep ; 36(6): 3188-3196, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27779684

ABSTRACT

Glioblastoma (GB) is the most frequent and biologically the most aggressive primary brain tumor in adults. Standard treatment for newly diagnosed GB consists of surgical resection, radiotherapy and chemotherapy. Resistance to therapy is a major obstacle, even with optimal treatment with a survival median of only 12-15 months. The heterogeneity and treatment response of GB makes this tumor type a challenging area of research. The aim of our study was to study the response of normal human astrocyte (HA) and human GB (T98G) cell lines to apoptosis inhibitors in vitro. ABT-737 is an inhibitor of anti-apoptotic proteins Bcl-2, Bcl-xL, Bcl-w, while MIM-1 is an Mcl-1 protein inhibitor. The viability of the cells was assayed biochemically using the cytotoxic methyl thiazolyl tetrazolium (MTT) assay. Changes in the expression of apoptosis-associated genes (n=93) in two human brain cell lines after treatment with the apoptosis inhibitors ABT-737 and MIM-1 (individually), between the apoptosis inhibitor treated group and the control group, were determined using a commercially pre-designed microfluidic array. Significant changes in apoptotic gene expression with more than a 2.0-fold difference in their expression levels were obtained in both cell lines; the most altered genes were in the HA cell line after MIM-1 treatment (n=42). These results contribute to the importance of apoptosis in normal and cancerous brain tissues and provide information on the effect of apoptosis inhibitors on cell viability and gene expression. Despite extensive investigations, a cure for GB is currently not available. The identification of an apoptotic gene panel and determining the sensitivity of normal and GB brain cells to individual apoptosis inhibitors could help to improve clinical practice and increase our understanding of brain tumor cell metabolism and apoptosis inhibitors in GB cells and astrocytes. Recognizing expression changes in pro-apoptotic and anti-apoptotic genes could contribute to the development of new treatments.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/genetics , Astrocytes/metabolism , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Astrocytes/drug effects , Biphenyl Compounds/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Gene Expression/drug effects , Glioblastoma/drug therapy , Humans , Microfluidics , Molecular Mimicry , Nitrophenols/pharmacology , Piperazines/pharmacology , Protein Interaction Domains and Motifs , Sulfonamides/pharmacology
15.
J Mol Neurosci ; 58(4): 497-506, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26585989

ABSTRACT

Both translation arrest and proteasome stress associated with accumulation of ubiquitin-conjugated protein aggregates were considered as a cause of delayed neuronal death after transient global brain ischemia; however, exact mechanisms as well as possible relationships are not fully understood. The aim of this study was to compare the effect of chemical ischemia and proteasome stress on cellular stress responses and viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells. Chemical ischemia was induced by transient treatment of the cells with sodium azide in combination with 2-deoxyglucose. Proteasome stress was induced by treatment of the cells with bortezomib. Treatment of SH-SY5Y cells with sodium azide/2-deoxyglucose for 15 min was associated with cell death observed 24 h after treatment, while glioblastoma T98G cells were resistant to the same treatment. Treatment of both SH-SY5Y and T98G cells with bortezomib was associated with cell death, accumulation of ubiquitin-conjugated proteins, and increased expression of Hsp70. These typical cellular responses to proteasome stress, observed also after transient global brain ischemia, were not observed after chemical ischemia. Finally, chemical ischemia, but not proteasome stress, was in SH-SY5Y cells associated with increased phosphorylation of eIF2α, another typical cellular response triggered after transient global brain ischemia. Our results showed that short chemical ischemia of SH-SY5Y cells is not sufficient to induce both proteasome stress associated with accumulation of ubiquitin-conjugated proteins and stress response at the level of heat shock proteins despite induction of cell death and eIF2α phosphorylation.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Heat-Shock Proteins/metabolism , Neurons/metabolism , Oxygen/metabolism , Proteasome Endopeptidase Complex/metabolism , Cell Death , Cell Hypoxia , Cell Line, Tumor , Endoplasmic Reticulum Stress , Humans , Phosphorylation , Unfolded Protein Response
16.
Gen Physiol Biophys ; 34(1): 33-42, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25367763

ABSTRACT

Bortezomib (PS-341, or Velcade), reversible inhibitor of 20S proteasome approved for the treatment of multiple myeloma and mantle cell lymphoma, exhibited a cytotoxic effect toward other malignancies including leukaemia. In this study, we have documented that incubation of both HL-60 and K562 leukaemia cells with nanomolar concentrations of bortezomib is associated with the death of HL-60 cells observed within 24 hours of incubation with bortezomib and the death of K562 cells that were observed after 72 hours of incubation with bortezomib. The relative resistance of K562 cells to bortezomib correlated well with significantly higher expression of HSP27, HSP70, HSP90α, HSP90ß and GRP75 in these cells. Incubation of both HL-60 and K562 cells with bortezomib induced a cleavage of HSP90ß as well as expression of HSP70 and HSP90ß but bortezomib did not affect levels of HSP27, HSP90α, GRP75 and GRP78. The death of both types of cells was accompanied with proteolytic activation of caspase 3 that was observed in HL-60 cells and proteolytic degradation of procaspase 3 in K562 cells. Our study has also pointed to essential role of caspase 8 in bortezomib-induced cleavage of HSP90ß in both HL-60 and K562 cells. Finally, we have shown that bortezomib induced activation of caspase 9/caspase 3 axis in HL-60 cells, while the mechanism of death of K562 cells remains unknown.


Subject(s)
Antineoplastic Agents/pharmacology , Boronic Acids/pharmacology , Gene Expression Regulation, Leukemic , Leukemia/pathology , Proteasome Endopeptidase Complex/metabolism , Pyrazines/pharmacology , Apoptosis , Bortezomib , Cell Death , Cell Survival , Dose-Response Relationship, Drug , Endoplasmic Reticulum Chaperone BiP , HL-60 Cells/drug effects , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/metabolism , Humans , K562 Cells/drug effects , Time Factors
17.
Cell Mol Neurobiol ; 35(1): 23-31, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25187358

ABSTRACT

Proteins of Bcl-2 family are crucial regulators of intrinsic (mitochondrial) pathway of apoptosis that is implicated among the mechanisms of ischemic neuronal death. Initiation of mitochondrial apoptosis depends on changes of equilibrium between anti-apoptotic and pro-apoptotic proteins of Bcl-2 family as well as on translocation of pro-apoptotic proteins of Bcl-2 family to mitochondria. The aim of this work was to study the effect of transient global brain ischemia on expression and intracellular distribution of proteins of Bcl-2 family in relation to the ischemia-induced changes of ERK and Akt kinase pathways as well as disturbances in ubiquitin proteasome system. Using four vessel occlusion model of transient global brain ischemia, we have shown that both ischemia in duration of 15 min and the same ischemia followed by 1, 3, 24, and 72 h of reperfusion did not affect the levels of either pro-apoptotic (Bad, PUMA, Bim, Bax, Noxa) or anti-apoptotic (Bcl-2, Bcl-xl, Mcl-1) proteins of Bcl-2 family in total cell extracts from rat hippocampus. However, significantly elevated level of Bad protein in the mitochondria isolated from rat hippocampus was observed already 1 h after ischemia and remained elevated 3 and 24 h after ischemia. We did not observe significant changes of the levels of Puma, Bax, Bcl-2, and Bcl-xl in the mitochondria after ischemia and ischemia followed by reperfusion. Our results might indicate possible involvement of Bad translocation to mitochondria in the mechanisms of neuronal death following transient global brain ischemia.


Subject(s)
Brain Ischemia/metabolism , Brain Ischemia/pathology , Neurons/metabolism , Neurons/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Cell Death/physiology , Hippocampus/metabolism , Hippocampus/pathology , Male , Mitochondria/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...