Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(10): 103518, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319323

ABSTRACT

We present measurements of ion velocity distribution profiles obtained by laser induced fluorescence (LIF) on an explosive laser produced plasma. The spatiotemporal evolution of the resulting carbon ion velocity distribution was mapped by scanning through the Doppler-shifted absorption wavelengths using a tunable, diode-pumped laser. The acquisition of these data was facilitated by the high repetition rate capability of the ablation laser (1 Hz), which allowed for the accumulation of thousands of laser shots in short experimental times. By varying the intensity of the LIF beam, we were able to explore the effects of fluorescence power against the laser irradiance in the context of evaluating the saturation vs the non-saturation regime. The small size of the LIF beam led to high spatial resolution of the measurement compared to other ion velocity distribution measurement techniques, while the fast-gate operation mode of the camera detector enabled the measurement of the relevant electron transitions.

2.
Rev Sci Instrum ; 92(9): 093102, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34598480

ABSTRACT

We present optical Thomson scattering measurements of electron density and temperature in a large-scale (∼2 cm) exploding laser plasma produced by irradiating a solid target with a high-energy (5-10 J) laser pulse at a high repetition rate (1 Hz). The Thomson scattering diagnostic matches this high repetition rate. Unlike previous work performed in single shots at much higher energies, the instrument allows for point measurements anywhere inside the plasma by automatically translating the scattering volume using motorized stages as the experiment is repeated at 1 Hz. Measured densities around 4 × 1016 cm-3 and temperatures around 7 eV result in a scattering parameter near unity, depending on the distance from the target. The measured spectra show the transition from collective scattering close to the target to non-collective scattering at larger distances. Densities obtained by fitting the weakly collective spectra agree to within 10% with an irradiance calibration performed via Raman scattering in nitrogen.

3.
Chaos ; 28(9): 096107, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278631

ABSTRACT

We present the results of an experimental investigation of the dynamics of droplets bouncing on a vibrating fluid bath for forcing accelerations above the Faraday threshold. Two distinct fluid viscosity and vibrational frequency combinations (20 cS-80 Hz and 50 cS-50 Hz) are considered, and the dependence of the system behavior on drop size and vibrational acceleration is characterized. A number of new dynamical regimes are reported, including meandering, zig-zagging, erratic bouncing, coalescing, and trapped regimes. Particular attention is given to the regime in which droplets change direction erratically and exhibit a dynamics akin to Brownian motion. We demonstrate that the effective diffusivity increases with vibrational acceleration and decreases with drop size, as suggested by simple scaling arguments.

4.
Chaos ; 28(9): 096101, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30278638

ABSTRACT

A hydrodynamic analog to the optical Talbot effect may be realized on the surface of a vertically shaken fluid bath when a periodic array of pillars protrudes from the fluid surface. When the pillar spacing is twice or one and a half times the Faraday wavelength, we observe repeated images of the pillars projected in front of the array. Sloshing inter-pillar ridges act as sources of Faraday waves, giving rise to self-images. Here, we explore the emergence of Faraday-Talbot patterns when the sloshing ridges between pillars have alternating phases. We present a simple model of linear wave superposition and use it to calculate the expected self-image locations, comparing them to experimental observations. We explore how alternating phase sources affect the Faraday-Talbot patterns for linear and circular arrays of pillars, where curvature allows for magnification and demagnification of the self-imaging pattern. The use of an underlying wavefield is a subject of current interest in hydrodynamic quantum analog experiments, as it may provide a means to trap walking droplets.

SELECTION OF CITATIONS
SEARCH DETAIL
...