Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(23): 6209-6215, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38838247

ABSTRACT

Palladium catalysts are frequently employed in processes where methanol is an energy vector or carrier, being useful for the synthesis of methanol from mixtures of carbon dioxide and hydrogen (CO2/H2) or its steam reforming on demand. Results of synchrotron-based ambient pressure X-ray photoelectron spectroscopy for the adsorption of methanol on a Pd(111) model catalyst show a rich surface chemistry and complex phenomena that strongly depend on pressure and temperature. At low pressures (<10-6 Torr) and temperatures (<300 K), CO is the dominant decomposition product. As the pressure increases, cleavage of C-H, O-H, and C-O bonds is observed, and at elevated temperatures (400-600 K) the formation of CO and CHx/C fragments compete on the surface. Thus, existing reaction networks for methanol decomposition must be modified. Furthermore, surface and subsurface hydrogen (coming from PdHx) play a significant role in the stability and removal of CHx and C species.

2.
ACS Appl Mater Interfaces ; 14(50): 56280-56289, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36484234

ABSTRACT

In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal-substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.

3.
Chem Mater ; 34(17): 7916-7936, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36117879

ABSTRACT

Understanding how reaction conditions affect metal-support interactions in catalytic materials is one of the most challenging tasks in heterogeneous catalysis research. Metal nanoparticles and their supports often undergo changes in structure and oxidation state when exposed to reactants, hindering a straightforward understanding of the structure-activity relations using only ex situ or ultrahigh vacuum techniques. Overcoming these limitations, we explored the metal-support interaction between gold nanoparticles and ceria supports in ultrahigh vacuum and after exposure to CO. A combination of in situ methods (on powder and model Au/CeO2 samples) and theoretical calculations was applied to investigate the gold/ceria interface and its reactivity toward CO exposure. X-ray photoelectron spectroscopy measurements rationalized by first-principles calculations reveal a distinctly inhomogeneous charge distribution, with Au+ atoms in contact with the ceria substrate and neutral Au0 atoms at the surface of the Au nanoparticles. Exposure to CO partially reduces the ceria substrate, leading to electron transfer to the supported Au nanoparticles. Transferred electrons can delocalize among the neutral Au atoms of the particle or contribute to forming inert Auδ- atoms near oxygen vacancies at the ceria surface. This charge redistribution is consistent with the evolution of the vibrational frequencies of CO adsorbed on Au particles obtained using diffuse reflectance infrared Fourier transform spectroscopy.

4.
Sensors (Basel) ; 20(19)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33007876

ABSTRACT

In this work, we investigate ethanol (EtOH)-sensing mechanisms of a ZnO nanorod (NRs)-based chemiresistor using a near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS). First, the ZnO NRs-based sensor was constructed, showing good performance on interaction with 100 ppm of EtOH in the ambient air at 327 °C. Then, the same ZnO NRs film was investigated by NAP-XPS in the presence of 1 mbar oxygen, simulating the ambient air atmosphere and O2/EtOH mixture at the same temperature. The partial pressure of EtOH was 0.1 mbar, which corresponded to the partial pressure of 100 ppm of analytes in the ambient air. To better understand the EtOH-sensing mechanism, the NAP-XPS spectra were also studied on exposure to O2/EtOH/H2O and O2/MeCHO (MeCHO = acetaldehyde) mixtures. Our results revealed that the reaction of EtOH with chemisorbed oxygen on the surface of ZnO NRs follows the acetaldehyde pathway. It was also demonstrated that, during the sensing process, the surface becomes contaminated by different products of MeCHO decomposition, which decreases dc-sensor performance. However, the ac performance does not seem to be affected by this phenomenon.

SELECTION OF CITATIONS
SEARCH DETAIL
...