Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 15(1): 229, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31277642

ABSTRACT

BACKGROUND: Listeria monocytogenes is a ubiquitous Gram-positive bacterium responsible for a severe foodborne disease in humans, and contaminated dairy products can be an important source of infection. Typically, infected dairy ruminants show clinical manifestations including encephalitis, septicemia, abortion, and diarrhea, but may also become asymptomatic carriers and shed L. monocytogenes in the feces acting as an important source of viable bacteria. Isolation from individual goat milk has been documented very rarely, and chronic, asymptomatic intramammary infection by L. monocytogenes with continuous milk shedding of viable bacteria has never been described in this dairy species. CASE PRESENTATION: At the routine controls, cheese and bulk milk were positive for L. monocytogenes in a herd of 200 lactating Alpine goats, but none showed clinical signs of listeriosis. Individual milk was subjected to bacterial culture and a clinically healthy goat was identified as affected by a chronic intramammary infection (IMI) by L. monocytogenes. The goat had never shown clinical signs of mastitis or other diseases. Her right half-udder milk was positive to L. monocytogenes in two consecutive samples collected one week apart, as demonstrated by bacterial culture and molecular analysis. Mammary tissues collected after culling were also positive to L. monocytogenes by culture. Histological examination highlighted a chronic interstitial mastitis with leukocyte infiltration, atrophy of the alveoli and presence of corpora amylacea. Immunohistochemistry (IHC) and immunofluorescence (IF) confirmed the presence of high numbers of bacteria in the lumen of mammary alveoli, with intracellular bacteria mainly located in macrophages, but also present in neutrophils and epithelial cells. After culling of the positive goat, bulk tank milk tested negative to L. monocytogenes at the following controls. CONCLUSION: This study demonstrates that L. monocytogenes can establish a chronic, subclinical IMI in goats with high numbers of bacteria shed in milk, representing a source of contamination for the herd and its dairy products. This underscores the importance of frequently monitoring all dairy herds that sell directly milk and/or fresh cheese and indicates that a chronic L. monocytogenes IMI should also be considered as source of bacteria when bulk tank milk contamination is detected in a dairy goat farm.


Subject(s)
Goat Diseases/microbiology , Listeria monocytogenes/isolation & purification , Listeriosis/veterinary , Mastitis/veterinary , Animals , Cheese/microbiology , Dairying , Female , Food Contamination/analysis , Goat Diseases/diagnosis , Goats , Italy , Listeriosis/microbiology , Mastitis/microbiology , Milk/microbiology
2.
Vet Res ; 49(1): 117, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30514405

ABSTRACT

Paratuberculosis (PTB) or Johne's disease is a contagious enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Ovine PTB is less understood than bovine PTB, especially concerning paucibacillary infection and its evolution into clinical disease. We combined shotgun proteomics, histopathology and immunohistochemistry for the characterization of ileal tissues collected from seven asymptomatic sheep negative to serum ELISA, positive to feces and tissue MAP IS900 and F57 PCR, histologically classified as paucibacillary, actively infected, together with 3 MAP-free controls (K). Following shotgun proteomics with label-free quantitation and differential analysis, 96 proteins were significantly changed in PTB vs K, and were mostly involved in immune defense processes and in the macrophage-MAP interaction. Principal component analysis (PCA) of protein abundances highlighted two PTB sample clusters, PTB1 and PTB2, indicating a dichotomy in their proteomic profiles. This was in line with the PCA of histopathology data and was related to features of type 2 (PTB1) and type 3a (PTB2) lesions, respectively. PTB2 proteomes differed more than PTB1 proteomes from K: 43 proteins changed significantly only in PTB2 and 11 only in PTB1. The differential proteins cathelicidin, haptoglobin, S100A8 and S100A9 were evaluated by immunohistochemistry. K tissues were negative to cathelicidin and haptoglobin and sparsely positive to S100A8 and S100A9. PTB tissues were positive to all four proteins, with significantly more cells in PTB2 than in PTB1. In conclusion, we described several pathways altered in paucibacillary PTB, highlighted some proteomic differences among paucibacillary PTB cases, and identified potential markers for disease understanding, staging, and detection.


Subject(s)
Ileum/pathology , Mycobacterium avium subsp. paratuberculosis/isolation & purification , Paratuberculosis/pathology , Sheep Diseases/pathology , Animals , Asymptomatic Infections , Biomarkers/analysis , Enzyme-Linked Immunosorbent Assay/veterinary , Feces/microbiology , Female , Ileum/microbiology , Immunohistochemistry/veterinary , Paratuberculosis/microbiology , Polymerase Chain Reaction/veterinary , Proteome , Proteomics , Sheep , Sheep Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...