Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-23366272

ABSTRACT

Rectification of surface EMGs during electrical stimulations (ES) is still a problem to be solved. The broad band frequency components of ES artifact overlap with the EMG spectrum, make this task challenging. In this study, we investigate the potential use of empirical mode decomposition (EMD) method to remove the stimulus artifact from surface EMGs collected during such applications. We hypothesize that the EMD algorithm provides a suitable platform for decomposing the EMG signal into physically meaningful intrinsic modes which can be used to isolate ES artifact. Basic EMD is tested on two signals - ES induced EMG and EMG of voluntary contractions added with simulated ES signal. The algorithm isolates the EMG from ES artifact with considerable success. Further, the EMD method along with the energy operator -TKEO gives even better representation of the EMG signal. However, some high frequency data was lost during reconstruction process. Hence, there is further need to investigate the relationship between the EMD parameters and stimulus artifact properties so that the algorithm can be optimized to reconstruct pure artifact free EMG signal with minimum lost of data.


Subject(s)
Algorithms , Artifacts , Electromyography , Adult , Electric Stimulation , Fourier Analysis , Humans , Image Processing, Computer-Assisted , Male , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Signal Processing, Computer-Assisted , Surface Properties
2.
Biomed Eng Online ; 9: 58, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-20932297

ABSTRACT

BACKGROUND: A fundamental unsolved problem in psychophysical detection experiments is in discriminating guesses from the correct responses. This paper proposes a coherent solution to this problem by presenting a novel classification method that compares biomechanical and psychological responses. METHODS: Subjects (13) stood on a platform that was translated anteriorly 16 mm to find psychophysical detection thresholds through a Adaptive 2-Alternative-Forced-Choice (2AFC) task repeated over 30 separate sequential trials. Anterior-posterior center-of-pressure (APCoP) changes (i.e., the biomechanical response R(B)) were analyzed to determine whether sufficient biomechanical information was available to support a subject's psychophysical selection (R(Ψ)) of interval 1 or 2 as the stimulus interval. A time-series-bitmap approach was used to identify anomalies in interval 1 (a1) and interval 2 (a2) that were present in the resultant APCoP signal. If a1 > a2 then R(B) = Interval 1. If a1 < a2, then R(B)= Interval 2. If a2-a1 < 0.1, R(B) was set to 0 (no significant difference present in the anomaly scores of interval 1 and 2). RESULTS: By considering both biomechanical (R(B)) and psychophysical (R(Ψ)) responses, each trial run could be classified as a: 1) HIT (and True Negative), if R(B) and R(Ψ) both matched the stimulus interval (SI); 2) MISS, if R(B) matched SI but the subject's reported response did not; 3) PSUEDO HIT, if the subject signalled the correct SI, but R(B) was linked to the non-SI; 4) FALSE POSITIVE, if R(B) = R(Ψ), and both associated to non-SI; and 5) GUESS, if R(B) = 0, if insufficient APCoP differences existed to distinguish SI. Ensemble averaging the data for each of the above categories amplified the anomalous behavior of the APCoP response. CONCLUSIONS: The major contributions of this novel classification scheme were to define and verify by logistic models a 'GUESS' category in these psychophysical threshold detection experiments, and to add an additional descriptor, "PSEUDO HIT". This improved classification methodology potentially could be applied to psychophysical detection experiments of other sensory modalities.


Subject(s)
Posture/physiology , Psychophysics/methods , Aged , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Movement/physiology , Perception/physiology , Pressure , Time Factors
3.
Article in English | MEDLINE | ID: mdl-18003110

ABSTRACT

This paper presents an innovative technique to study postural control. Our translating platform, the Sliding Linear Investigative Platform For Analyzing Lower Limb Stability and Simultaneous Tracking, EMG and Pressure mapping (SLIP-FALLS-STEPm), makes precise, vibration movements under controlled conditions. We look at the psychophysical thresholds to the perception of a sinusoidally induced sway. In the Sine Lock experiments described, an induced sinusoidal perturbation locks the subject's natural sway pattern at the frequency of the perturbation. The input / output system is treated as an Amplitude Shift Key (ASK) modulated signal modulating a carrier frequency (at or about a subject's natural sway frequency). The Position signal (input) and the Anterior-Posterior Center of Pressure (APCOP) signal (output) or the ankle angle are demodulated by mixing them with the pure sine wave carrier at the frequency of underlying oscillation and then low-pass filtering it to detect the amplitude envelope. These detected envelopes elucidate that the square pulse increase in the position sine wave amplitude yields a triangular increase in APCOP demodulated signal.


Subject(s)
Leg/physiology , Movement , Posture , Adult , Blindness , Homeostasis , Humans , Reference Values , Vision, Ocular
4.
Article in English | MEDLINE | ID: mdl-18002955

ABSTRACT

This study modeled ankle angle changes during small forward perturbations of a standing platform. A two-dimensional biomechanical inverted pendulum model was developed that uses sway frequencies derived from quiet standing observations on a subject's Anterior Posterior Center of Pressure (APCoP) to track ankle angle changes during a 16 mm anterior displacement perturbation of a platform on which a subject stood. This model used the total torque generated at the ankle joint as one of the inputs, and calculated it assuming a PID controller. This feedback system generated a simulated ankle torque based on the angular position of the center of mass (CoM) with respect to vertical line passing through the ankle joint. This study also assumed that the internal components of the net torque were only a controller torque and a sway-pattern-generating torque. The final inputs to the model were the platform acceleration and anthropometric terms. This model of postural sway dynamics predicted sway angle and the trajectory of the center of mass. Knowing these relationships can advance an understanding of the ankle strategy employed in balance control.


Subject(s)
Ankle Joint/physiology , Ankle/physiology , Models, Biological , Postural Balance/physiology , Adult , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...