Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 8(6)2022 06.
Article in English | MEDLINE | ID: mdl-35759406

ABSTRACT

Shigella flexneri is a major health burden in low- and middle-income countries, where it is a leading cause of mortality associated with diarrhoea in children, and shows an increasing incidence among travellers and men having sex with men. Like all Shigella spp., S. flexneri has evolved from commensal Escherichia coli following the acquisition of a large plasmid pINV, which contains genes essential for virulence. Current sequence typing schemes of Shigella are based on combinations of chromosomal genetic loci, since pINV-encoded virulence genes are often lost during growth in the laboratory, making these elements inappropriate for sequence typing. By performing comparative analysis of pINVs from S. flexneri strains isolated from different geographical regions and belonging to different serotypes, we found that in contrast to plasmid-encoded virulence genes, plasmid maintenance genes are highly stable pINV-encoded elements. For the first time, to our knowledge, we have developed a S. flexneri plasmid multilocus sequence typing (pMLST) method based on different combinations of alleles of the vapBC and yacAB toxin-antitoxin (TA) systems, and the parAB partitioning system. This enables typing of S. flexneri pINV plasmids into distinct 'virulence sequence types' (vSTs). Furthermore, the phylogenies of vST alleles and bacterial host core genomes suggests an intimate co-evolution of pINV with the chromosome of its bacterial host, consistent with previous findings. This work demonstrates the potential of plasmid maintenance loci as genetic characteristics to study as well as to trace the molecular phylogenesis of S. flexneri pINV and the phylogenetic relationship of this plasmid with its bacterial host.


Subject(s)
Shigella flexneri , Shigella , Child , Escherichia coli/genetics , Humans , Phylogeny , Plasmids/genetics , Shigella/genetics , Shigella flexneri/genetics , Virulence/genetics
2.
J Bacteriol ; 204(3): e0051921, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34978459

ABSTRACT

Shigella sonnei is a major cause of bacillary dysentery and an increasing concern due to the spread of multidrug resistance. S. sonnei harbors pINV, an ∼210 kb plasmid that encodes a type III secretion system (T3SS), which is essential for virulence. During growth in the laboratory, avirulence arises spontaneously in S. sonnei at high frequency, hampering studies on and vaccine development against this important pathogen. Here, we investigated the molecular basis for the emergence of avirulence in S. sonnei and showed that avirulence mainly results from pINV loss, which is consistent with previous findings. Ancestral deletions have led to the loss from S. sonnei pINV of two toxin-antitoxin (TA) systems involved in plasmid maintenance, CcdAB and GmvAT, which are found on pINV in Shigella flexneri. We showed that the introduction of these TA systems into S. sonnei pINV reduced but did not eliminate pINV loss, while the single amino acid polymorphisms found in the S. sonnei VapBC TA system compared with S. flexneri VapBC also contributed to pINV loss. Avirulence also resulted from deletions of T3SS-associated genes in pINV through recombination between insertion sequences (ISs) on the plasmid. These events differed from those observed in S. flexneri due to the different distribution and repertoire of ISs. Our findings demonstrated that TA systems and ISs influenced plasmid dynamics and loss in S. sonnei and could be exploited for the design and evaluation of vaccines. IMPORTANCE Shigella sonnei is the major cause of shigellosis in high-income and industrializing countries and is an emerging, multidrug-resistant pathogen. A significant challenge when studying this bacterium is that it spontaneously becomes avirulent during growth in the laboratory through loss of its virulence plasmid (pINV). Here, we deciphered the mechanisms leading to avirulence in S. sonnei and how the limited repertoire and amino acid sequences of plasmid-encoded toxin-antitoxin (TA) systems make the maintenance of pINV in this bacterium less efficient compared with Shigella flexneri. Our findings highlighted how subtle differences in plasmids in closely related species have marked effects and could be exploited to reduce plasmid loss in S. sonnei. This should facilitate research on this bacterium and vaccine development.


Subject(s)
Antitoxins , Dysentery, Bacillary , Toxin-Antitoxin Systems , Amino Acid Sequence , Antitoxins/genetics , DNA Transposable Elements , Dysentery, Bacillary/microbiology , Dysentery, Bacillary/prevention & control , Humans , Plasmids/genetics , Shigella flexneri/genetics , Shigella sonnei/genetics , Toxin-Antitoxin Systems/genetics , Virulence/genetics
3.
Pathogens ; 10(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34578112

ABSTRACT

Shigella is a leading cause of bacillary dysentery worldwide, responsible for high death rates especially among children under five in low-middle income countries. Shigella sonnei prevails in high-income countries and is becoming prevalent in industrializing countries, where multi-drug resistant strains have emerged, as a significant public health concern. One strategy to combat drug resistance in S. sonnei is the development of effective vaccines. There is no licensed vaccine against Shigella, and development has been hindered by the lack of an effective small-animal model. In this work, we used human enteroids, for the first time, as a model system to evaluate a plasmid-stabilized S. sonnei live attenuated vaccine strain, CVD 1233-SP, and a multivalent derivative, CVD 1233-SP::CS2-CS3, which expresses antigens from enterotoxigenic Escherichia coli. The strains were also tested for immunogenicity and protective capacity in the guinea pig model, demonstrating their ability to elicit serum and mucosal antibody responses as well as protection against challenge with wild-type S. sonnei. These promising results highlight the utility of enteroids as an innovative preclinical model to evaluate Shigella vaccine candidates, constituting a significant advance for the development of preventative strategies against this important human pathogen.

4.
Cell Microbiol ; 21(11): e13062, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31134722

ABSTRACT

Shigella spp. are Gram-negative enteric pathogens and the leading cause of bacterial dysentery worldwide. Since the discovery more than three decades ago that the large virulence plasmid of Shigella is essential for pathogenesis, our understanding of how the bacterium orchestrates inflammation and tissue destruction at the mucosal surface has been informed by studies employing the rabbit ileal loop model. Here, we outline how Phillippe Sansonetti, together with his co-workers and collaborators, exploited this model to provide a holistic view of how Shigella survives in the intestinal tract, traverses the intestinal epithelial barrier, and manipulates the host immune system to cause disease.


Subject(s)
Dysentery, Bacillary/immunology , Intestinal Mucosa/microbiology , Shigella/pathogenicity , Animals , Dysentery, Bacillary/metabolism , Host-Pathogen Interactions/immunology , Humans , Inflammation/immunology , Inflammation/metabolism , Shigella/metabolism , Virulence/genetics , Virulence/immunology
5.
Mol Microbiol ; 111(5): 1355-1366, 2019 05.
Article in English | MEDLINE | ID: mdl-30767313

ABSTRACT

Members of the genus Shigella carry a large plasmid, pINV, which is essential for virulence. In Shigella flexneri, pINV harbours three toxin-antitoxin (TA) systems, CcdAB, GmvAT and VapBC that promote vertical transmission of the plasmid. Type II TA systems, such as those on pINV, consist of a toxic protein and protein antitoxin. Selective degradation of the antitoxin by proteases leads to the unopposed action of the toxin once genes encoding a TA system have been lost, such as following failure to inherit a plasmid harbouring a TA system. Here, we investigate the role of proteases in the function of the pINV TA systems and demonstrate that Lon, but not ClpP, is required for their activity during plasmid stability. This provides the first evidence that acetyltransferase family TA systems, such as GmvAT, can be regulated by Lon. Interestingly, S. flexneri pINV also harbours two putative partitioning systems, ParAB and StbAB. We show that both systems are functional for plasmid maintenance although their activity is masked by other systems on pINV. Using a model vector based on the pINV replicon, we observe temperature-dependent differences between the two partitioning systems that contribute to our understanding of the maintenance of virulence in Shigella species.


Subject(s)
Gene Expression Regulation, Bacterial , Plasmids/genetics , Protease La/genetics , Shigella flexneri/genetics , Shigella flexneri/pathogenicity , Toxin-Antitoxin Systems , Acetyltransferases/metabolism , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Protease La/metabolism , Replicon , Shigella flexneri/enzymology , Temperature , Virulence
6.
Nat Rev Microbiol ; 16(8): 484-495, 2018 08.
Article in English | MEDLINE | ID: mdl-29855597

ABSTRACT

Plasmids have a major role in the development of disease caused by enteric bacterial pathogens. Virulence plasmids are usually large (>40 kb) low copy elements and encode genes that promote host-pathogen interactions. Although virulence plasmids provide advantages to bacteria in specific conditions, they often impose fitness costs on their host. In this Review, we discuss virulence plasmids in Enterobacteriaceae that are important causes of diarrhoea in humans, Shigella spp., Salmonella spp., Yersinia spp and pathovars of Escherichia coli. We contrast these plasmids with those that are routinely used in the laboratory and outline the mechanisms by which virulence plasmids are maintained in bacterial populations. We highlight examples of virulence plasmids that encode multiple mechanisms for their maintenance (for example, toxin-antitoxin and partitioning systems) and speculate on how these might contribute to their propagation and success.


Subject(s)
Enterobacteriaceae/genetics , Enterobacteriaceae/pathogenicity , Plasmids/genetics , Virulence/genetics
7.
PLoS Genet ; 13(9): e1007014, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28945748

ABSTRACT

Acquisition of a single copy, large virulence plasmid, pINV, led to the emergence of Shigella spp. from Escherichia coli. The plasmid encodes a Type III secretion system (T3SS) on a 30 kb pathogenicity island (PAI), and is maintained in a bacterial population through a series of toxin:antitoxin (TA) systems which mediate post-segregational killing (PSK). The T3SS imposes a significant cost on the bacterium, and strains which have lost the plasmid and/or genes encoding the T3SS grow faster than wild-type strains in the laboratory, and fail to bind the indicator dye Congo Red (CR). Our aim was to define the molecular events in Shigella flexneri that cause loss of Type III secretion (T3S), and to examine whether TA systems exert positional effects on pINV. During growth at 37°C, we found that deletions of regions of the plasmid including the PAI lead to the emergence of CR-negative colonies; deletions occur through intra-molecular recombination events between insertion sequences (ISs) flanking the PAI. Furthermore, by repositioning MvpAT (which belongs to the VapBC family of TA systems) near the PAI, we demonstrate that the location of this TA system alters the rearrangements that lead to loss of T3S, indicating that MvpAT acts both globally (by reducing loss of pINV through PSK) as well as locally (by preventing loss of adjacent sequences). During growth at environmental temperatures, we show for the first time that pINV spontaneously integrates into different sites in the chromosome, and this is mediated by inter-molecular events involving IS1294. Integration leads to reduced PAI gene expression and impaired secretion through the T3SS, while excision of pINV from the chromosome restores T3SS function. Therefore, pINV integration provides a reversible mechanism for Shigella to circumvent the metabolic burden imposed by pINV. Intra- and inter-molecular events between ISs, which are abundant in Shigella spp., mediate plasticity of S. flexneri pINV.


Subject(s)
Plasmids/genetics , Shigella/genetics , Type III Secretion Systems/genetics , Chromosomes, Bacterial/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Genomic Islands/genetics , Shigella/pathogenicity
8.
Yale J Biol Med ; 90(1): 135-145, 2017 03.
Article in English | MEDLINE | ID: mdl-28356901

ABSTRACT

Undoubtedly, the discovery of penicillin is one of the greatest milestones in modern medicine. 2016 marks the 75th anniversary of the first systemic administration of penicillin in humans, and is therefore an occasion to reflect upon the extraordinary impact that penicillin has had on the lives of millions of people since. This perspective presents a historical account of the discovery of the wonder drug, describes the biological nature of penicillin, and considers lessons that can be learned from the golden era of antibiotic research, which took place between the 1940s and 1960s. Looking back at the history of penicillin might help us to relive this journey to find new treatments and antimicrobial agents. This is particularly relevant today as the emergence of multiple drug resistant bacteria poses a global threat, and joint efforts are needed to combat the rise and spread of resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Penicillins/pharmacology , Anti-Infective Agents/pharmacology , Drug Resistance, Microbial , Drug Resistance, Multiple, Bacterial , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...