Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(17): 15017-15030, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37151558

ABSTRACT

The utilization of slow-release fertilizer materials capable of responding to their environment and releasing nutrient ions efficiently over a prolonged period is an emerging research area in agricultural materials sciences. In this study, two-dimensional layered materials were prepared to release phosphor ions (P) slowly into the soil as well as in the hydroponic system. Various P-intercalated layered double hydroxides (LDHs) (Mg/Al, Zn/Al, and Mg-Zn/Al-LDHs) with a molar ratio of 2:1 were synthesized using an ion-exchange method from corresponding LDHs containing NO3 - ions within the layers. Sodium alginate (SA) was used to encapsulate P-intercalated Mg/Al-LDH to produce bionanocomposite beads (LB) to check the effect of the biopolymer matrix on the release characteristics. The prepared materials were characterized by XRD and FTIR to confirm the incorporation of P in LDHs. TGA, SEM, and elemental analysis were also performed to study the thermal decomposition pattern, surface morphology, and chemical composition of synthesized materials. The P-release experiments were conducted in a soil solution. The performance of the prepared materials was investigated in soil as well as in a hydroponic system for tomato plants under a controlled atmosphere of humidity, temperature, and light. The fertilization ability of the prepared materials was compared with that of a soluble P source (KH2PO4), commercial hydroponic fertilizer (Nutrifeed), and a commercial soil slow-release fertilizer (Wonder plant starter). The prepared materials demonstrated a slow release of P in the soil solution. P-intercalated LDHs were not very effective under hydroponic conditions; however, the LDHs were more effective in the soil system in terms of dry matter production and P content in dry matter. Furthermore, LDHs were able to increase the soil pH value over time.

2.
Int J Food Microbiol ; 366: 109561, 2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35139442

ABSTRACT

Anthracnose decay is one of the major causes of postharvest losses of avocados (Persea americana), during marketing. Currently, Prochloraz® fungicide is used to control anthracnose at postharvest stage which poses threat to consumer safety. Therefore, this study evaluated the effects of high and low molecular weight chitosan on the control of avocado anthracnose and fruit defence mechanism. In curative inoculation, avocados '(Fuerte') were inoculated via the wounds with C. gloeosporioides spore suspension (20 µL, 1 × 106 spores mL-1). Thereafter coated with different concentrations (0.5%, 1% and 1.5%) of low (LMWC) and high molecular weight (HMWC) chitosan and fruits were held at 25 °C for 5 days. The % anthracnose incidence in avocado fruits was recorded on day 5. During preventative inoculation, wounded fruits were dipped in different concentrations of LMWC or HMWC solutions, and subsequently inoculated with C. gloeosporioides suspension. Preventatively inoculated fruits were stored for 28 days at 6.5 °C, 85% RH and thereafter for 5 days at 25 °C and 75% RH to simulated market shelf condition. The % anthracnose incidence was recorded on day 5. Fruit treated with Prochloraz® and water were included as controls for both curative and preventative infected fruits. Promising chitosan coatings with the lowest anthracnose incidence and the controls were investigated for skin epicatechin content, defence-related genes; phenylalanine ammonia lyase (PAL), lipoxygenase (LOX), fatty acid elongase (avael) and desaturase (avfad 12-3), chalcone synthase (CHS) and flavonol synthase (FLS) using RT- qPCR method. The zeta potential of selected chitosan coatings was done following standard procedures. Percentage of anthracnose incidence were lowest in 1.5% LMWC (18%, 3 mm) compared to Prochloraz® (23%, 5 mm) and the untreated fruit (90%, 24 mm). The 1.5% LMWC had the highest up-regulation of PAL, avfael, avfad 12-3, CHS, FLS genes and down-regulation of LOX gene with concomitant increase in epicatechin content (340 mg kg-1) relative to other chitosan treatments, untreated and Prochloraz® treated fruits. The superior positive zeta potential of LMWC 1.5% coating corroborates its effectiveness in controlling avocado anthracnose than HMWC 1.5%. It is possible that the interaction between the positively charged chitosan amino group (-NH3+) and the negatively charged microbial cell membrane is responsible for the enhanced antifungal activity. In late season naturally infected fruits dipped in 1.5% LMWC, anthracnose incidence dropped to 28% while Prochloraz® treated fruits showed anthracnose incidence of 82% on day 8 at the market shelf. LMWC 1.5% can replace the currently used Prochloraz®.


Subject(s)
Chitosan , Persea , Chitosan/pharmacology , Fruit/microbiology , Incidence , Molecular Weight , Persea/microbiology
3.
Molecules ; 26(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915735

ABSTRACT

Keratinocyte carcinoma (KC) is a form of skin cancer that develops in keratinocytes, which are the predominant cells present in the epidermis layer of the skin. Keratinocyte carcinoma comprises two sub-types, namely basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). This review provides a holistic literature assessment of the origin, diagnosis methods, contributing factors, and current topical treatments of KC. Additionally, it explores the increase in KC cases that occurred globally over the past ten years. One of the principal concepts highlighted in this article is the adverse effects linked to conventional treatment methods of KC and how novel treatment strategies that combine phytochemistry and transdermal drug delivery systems offer an alternative approach for treatment. However, more in vitro and in vivo studies are required to fully assess the efficacy, mechanism of action, and safety profile of these phytochemical based transdermal chemotherapeutics.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , Phytochemicals/pharmacology , Plants, Medicinal/chemistry , Skin Neoplasms/etiology , Skin Neoplasms/metabolism , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biological Variation, Population , Clinical Studies as Topic , Disease Management , Disease Susceptibility , Drug Administration Routes , Drug Evaluation, Preclinical , Humans , Incidence , Keratinocytes/pathology , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Population Surveillance , Precancerous Conditions/diagnosis , Precancerous Conditions/drug therapy , Precancerous Conditions/etiology , Precancerous Conditions/metabolism , Skin Neoplasms/diagnosis , Skin Neoplasms/drug therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...