Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3735, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702308

ABSTRACT

Color morphing refers to color change in response to an environmental stimulus. Photochromic materials allow color morphing in response to light, but almost all photochromic materials suffer from degradation when exposed to moist/humid environments or harsh chemical environments. One way of overcoming this challenge is by imparting chemical shielding to the color morphing materials via superomniphobicity. However, simultaneously imparting color morphing and superomniphobicity, both surface properties, requires a rational design. In this work, we systematically design color morphing surfaces with superomniphobicity through an appropriate combination of a photochromic dye, a low surface energy material, and a polymer in a suitable solvent (for one-pot synthesis), applied through spray coating (for the desired texture). We also investigate the influence of polymer polarity and material composition on color morphing kinetics and superomniphobicity. Our color morphing surfaces with effective chemical shielding can be designed with a wide variety of photochromic and thermochromic pigments and applied on a wide variety of substrates. We envision that such surfaces will have a wide range of applications including camouflage soldier fabrics/apparel for chem-bio warfare, color morphing soft robots, rewritable color patterns, optical data storage, and ophthalmic sun screening.

2.
Adv Sci (Weinh) ; 11(10): e2308101, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233209

ABSTRACT

While there are many droplet manipulation techniques, all of them suffer from at least one of the following drawbacks - complex fabrication or complex equipment or liquid loss. In this work, a simple and portable technique is demonstrated that enables on-demand, contact-less and loss-less manipulation of liquid droplets through a combination of contact electrification and slipperiness. In conjunction with numerical simulations, a quantitative analysis is presented to explain the onset of droplet motion. Utilizing the contact electrification technique, contact-less and loss-less manipulation of polar and non-polar liquid droplets on different surface chemistries and geometries is demonstrated. It is envisioned that the technique can pave the way to simple, inexpensive, and portable lab on a chip and point of care devices.

3.
J Phys Chem Lett ; 10(18): 5530-5535, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31365261

ABSTRACT

Nuclear quantum effects (NQEs) in water arise due to delocalization, zero-point energy (ZPE), and quantum tunneling of protons. Whereas quantum tunneling is significant only at low temperatures, proton delocalization and ZPE influence the properties of water at normal temperature and pressure (NTP), giving rise to isotope effects. However, the consequences of NQEs for interfaces of water with hydrophobic media, such as perfluorocarbons, have remained largely unexplored. Here, we reveal the existence and signature of NQEs modulating hydrophobic surface forces at NTP. Our experiments demonstrate that the attractive hydrophobic forces between molecularly smooth and rigid perfluorinated surfaces in nanoconfinement are ≈10% higher in H2O than in D2O, even though the contact angles of H2O and D2O on these surfaces are indistinguishable. Our molecular dynamics simulations show that the underlying cause of the difference includes the destabilizing effect of ZPE on the librational motions of interfacial H2O, which experiences larger quantum effects than D2O.

4.
J Colloid Interface Sci ; 533: 723-732, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30199828

ABSTRACT

HYPOTHESIS: Direct contact membrane distillation (DCMD) processes exploit water-repellant membranes to desalt warm seawaters by allowing only water vapor to transport across. While perfluorinated membranes/coatings are routinely used for DCMD, their vulnerability to abrasion, heat, and harsh chemicals necessitates alternatives, such as ceramics. Herein, we systematically assess the potential of ceramic membranes consisting of anodized aluminum oxide (AAO) for DCMD. EXPERIMENTS: We rendered AAO membranes superhydrophobic to accomplish the separation of hot salty water (343 K, 0.7 M NaCl) and cold deionized water (292 K) and quantified vapor transport. We also developed a multiscale model based on computational fluid dynamics, conjugate heat transfer, and the kinetic theory of gases to gain insights into our experiments. FINDINGS: The average vapor fluxes, J, across three sets of AAO membranes with average nanochannel diameters (and porosities) centered at 80 nm (32%), 100 nm (37%), and 160 nm (57%) varied by < 25%, while we had expected them to scale with the porosities. Our multiscale simulations unveiled how the high thermal conductivity of the AAO membranes reduced the effective temperature drive for the mass transfer. Our results highlight the limitations of AAO membranes for DCMD and might advance the rational development of desalination membranes.

SELECTION OF CITATIONS
SEARCH DETAIL
...