Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Geophys Res Lett ; 47(20): e2020GL090236, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33281242

ABSTRACT

A number of feedbacks regulate the response of Arctic sea ice to local atmospheric warming. Using a realistic coupled ocean-sea ice model and its adjoint, we isolate a mechanism by which significant ice growth at the end of the melt season may occur as a lagged response to Arctic atmospheric warming. A series of perturbation simulations informed by adjoint model-derived sensitivity patterns reveal the enhanced ice growth to be accompanied by a reduction of snow thickness on the ice pack. Detailed analysis of ocean-ice-snow heat budgets confirms the essential role of the reduced snow thickness for persistence and delayed overshoot of ice growth. The underlying mechanism is a snow-melt-conductivity feedback, wherein atmosphere-driven snow melt leads to a larger conductive ocean heat loss through the overlying ice layer. Our results highlight the need for accurate observations of snow thickness to constrain climate models and to initialize sea ice forecasts.

2.
J Geophys Res Atmos ; 124(6): 2932-2945, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-31218150

ABSTRACT

Several recent studies from both Greenland and Antarctica have reported significant changes in the water isotopic composition of near-surface snow between precipitation events. These changes have been linked to isotopic exchange with atmospheric water vapor and sublimation-induced fractionation, but the processes are poorly constrained by observations. Understanding and quantifying these processes are crucial to both the interpretation of ice core climate proxies and the formulation of isotope-enabled general circulation models. Here, we present continuous measurements of the water isotopic composition in surface snow and atmospheric vapor together with near-surface atmospheric turbulence and snow-air latent and sensible heat fluxes, obtained at the East Greenland Ice-Core Project drilling site in summer 2016. For two 4-day-long time periods, significant diurnal variations in atmospheric water isotopologues are observed. A model is developed to explore the impact of this variability on the surface snow isotopic composition. Our model suggests that the snow isotopic composition in the upper subcentimeter of the snow exhibits a diurnal variation with amplitudes in δ18O and δD of ~2.5‰ and ~13‰, respectively. As comparison, such changes correspond to 10-20% of the magnitude of seasonal changes in interior Greenland snow pack isotopes and of the change across a glacial-interglacial transition. Importantly, our observation and model results suggest, that sublimation-induced fractionation needs to be included in simulations of exchanges between the vapor and the snow surface on diurnal timescales during summer cloud-free conditions in northeast Greenland.

SELECTION OF CITATIONS
SEARCH DETAIL
...