Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 11: 1107619, 2023.
Article in English | MEDLINE | ID: mdl-36959878

ABSTRACT

The use of biological systems such as plants, bacteria, and fungi for the synthesis of nanomaterials has emerged to fill the gap in the development of sustainable methods that are non-toxic, pollution-free, environmentally friendly, and economical for synthesizing nanomaterials with potential in biomedicine, biotechnology, environmental science, and engineering. Current research focuses on understanding the characteristics of biogenic nanoparticles as these will form the basis for the biosynthesis of nanoparticles with multiple functions due to the physicochemical properties they possess. This review briefly describes the intrinsic enzymatic mimetic activity of biogenic metallic nanoparticles, the cytotoxic effects of nanoparticles due to their physicochemical properties and the use of capping agents, molecules acting as reducing and stability agents and which aid to alleviate toxicity. The review also summarizes recent green synthetic strategies for metallic nanoparticles.

2.
Nanomaterials (Basel) ; 11(6)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203590

ABSTRACT

In the present study, silver nanoparticles (AgNPs) were synthesized using both the chemical and biological methods and conjugated with Pyrenacantha grandiflora extracts. These were then characterized and evaluated for antimicrobial activities against multi-drug resistant pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumonia, and Escherichia coli. Nanoparticles were analyzed with UV-visible spectrophotometer, transmission electron microscopy (TEM), and energy dispersive X-ray analysis (EDX). Silver nanoparticles, P. grandiflora extracts, and the conjugates were also analyzed with Fourier transform infrared spectroscopy (FTIR). As a result, quasi-sphere-shaped AgNPs with sizes ranging from 5 to 33 nm and spherically shaped AgNPs with sizes ranging from 3 to 25 nm were formed from chemical and biological synthesis, respectively. A well diffusion assay showed that the activity of silver nanoparticles was most improved with acetone extract against all tested bacteria with diameters in the range of 19-24 mm. The lowest MIC value of 0.0063 mg/mL against MRSA was observed when biologically synthesized AgNPs were conjugated with acetone and water extracts. Chemically synthesized silver nanoparticles showed the lowest MIC value of 0.0063 mg/mL against E. coli when conjugated with acetone and methanol extracts. This study indicates that silver nanoparticles conjugated with P. gandiflora tubers extracts exhibit strong antibacterial activities against multi-drug resistant bacterial pathogens. Therefore, biosynthesized conjugates could be utilized as antimicrobial agents for effective disease management due to the synergistic antibacterial activity that was observed.

3.
J Inorg Biochem ; 157: 15-24, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26824520

ABSTRACT

Computational studies were conducted to identify the favourable formation of the inclusion complex of chloramphenicol with cyclodextrins. The results of molecular docking and molecular dynamics predicted the strongest interaction of chloramphenicol with γ-cyclodextrin. Further, the inclusion complex of chloramphenicol with γ-cyclodextrin was experimentally prepared and a phenomenon of inclusion was verified by using different characterization techniques such as thermogravimetric analysis, differential scanning calorimetry, (1)H nuclear magnetic resonance (NMR) and two dimensional nuclear overhauser effect spectroscopy (NOESY) experiments. From these results it was concluded that γ-cyclodextrins could be an appropriate cyclodextrin polymer which can be used to functionalize chloramphenicol on the surface of silver nanoparticles. In addition, γ-cyclodextrin capped silver nanoparticles were synthesized and characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR) and zeta potential analysis. Molecular recognition of chloramphenicol by these cyclodextrin capped silver nanoparticles was confirmed by surface enhanced raman spectroscopy (SERS) experiments. Synergistic antibacterial effect of chloramphenicol with γ-cyclodextrin capped silver nanoparticles was evaluated against Pseudomonas aeruginosa (ATCC 27853), Enterococcus faecalis (ATCC 5129), Klebsiella pneumoniae (ATCC 700603) and Staphylococcus aureus (ATCC 43300). The results from the antibacterial experiment were favourable thus allowing us to conclude that the approach of modifying organic drug molecules with cyclodextrin capped inorganic silver nanoparticles could help to enhance the antibacterial activity of them.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chloramphenicol/pharmacology , Metal Nanoparticles , Silver/chemistry , gamma-Cyclodextrins/chemistry , Microscopy, Electron, Scanning , Molecular Dynamics Simulation , Spectrum Analysis
4.
Biotechnol Biotechnol Equip ; 28(1): 123-135, 2014 Jan 02.
Article in English | MEDLINE | ID: mdl-26019498

ABSTRACT

Amylin is a peptide that aggregates into species that are toxic to pancreatic beta cells, leading to type II diabetes. This study has for the first time quantified amylin association and dissociation kinetics (association constant (ka ) = 28.7 ± 5.1 L mol-1 s-1 and dissociation constant (kd ) = 2.8 ± 0.6 ×10-4 s-1) using surface plasmon resonance (SPR). Thus far, techniques used for the sizing of amylin aggregates do not cater for the real-time monitoring of unconstrained amylin in solution. In this regard we evaluated recently innovated nanoparticle tracking analysis (NTA). In addition, both SPR and NTA were used to study the effect of previously synthesized amylin derivatives on amylin aggregation and to evaluate their potential as a cell-free system for screening potential inhibitors of amylin-mediated cytotoxicity. Results obtained from NTA highlighted a predominance of 100-300 nm amylin aggregates and correlation to previously published cytotoxicity results suggests the toxic species of amylin to be 200-300 nm in size. The results seem to indicate that NTA has potential as a new technique to monitor the aggregation potential of amyloid peptides in solution and also to screen potential inhibitors of amylin-mediated cytotoxicity.

5.
Biomed Res Int ; 2013: 826706, 2013.
Article in English | MEDLINE | ID: mdl-23607096

ABSTRACT

Amylin is primarily responsible for classifying type II diabetes as an amyloid (protein misfolding) disease as it has great potential to aggregate into toxic nanoparticles, thereby resulting in loss of pancreatic ß-cells. Although type II diabetes is on the increase each year, possibly due to bad eating habits of modern society, research on the culprit for this disease is still in its early days. In addition, unlike the culprit for Alzheimer's disease, amyloid ß-peptide, amylin has failed to receive attention worthy of being featured in an abundance of review articles. Thus, the aim of this paper is to shine the spotlight on amylin in an attempt to put it onto the top of researchers' to-do list since the secondary complications of type II diabetes have far-reaching and severe consequences on public health both in developing and fully developed countries alike. This paper will cover characteristics of the amylin aggregates, mechanisms of toxicity, and a particular focus on inhibitors of toxicity and techniques used to assess these inhibitors.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Islet Amyloid Polypeptide/metabolism , Peptides/metabolism , Amino Acid Sequence , Amyloid beta-Peptides/chemistry , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Humans , Islet Amyloid Polypeptide/chemistry , Islets of Langerhans/metabolism , Nanofibers/chemistry , Peptides/chemistry , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology
6.
Biotechnol Appl Biochem ; 60(4): 384-92, 2013.
Article in English | MEDLINE | ID: mdl-23586620

ABSTRACT

Amylin has been implicated in type II diabetes because of its inherent property to misfold into toxic aggregates. Although it has been shown that amylin interacts with cell membranes, no study to date has monitored the association process using a direct approach. The present study uses confocal microscopy to identify the localization of carboxyfluorescein-labeled amylin in RIN-5F cells. In addition, the size of the aggregates that are formed was evaluated using nanoparticle tracking analysis. In support of previous findings, amylin was observed to interact with and remain associated with the cell membrane. The cell membrane-associated aggregates spanned a size range of 130-800 nm.


Subject(s)
Fluorescent Dyes , Islet Amyloid Polypeptide/analysis , Amino Acid Sequence , Animals , Cell Membrane/metabolism , Fluorescent Dyes/analysis , Fluorescent Dyes/chemistry , Humans , Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/metabolism , Molecular Sequence Data , Protein Transport , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...