Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 2(5): pgad126, 2023 May.
Article in English | MEDLINE | ID: mdl-37143864

ABSTRACT

The activity of integral membrane proteins is tightly coupled to the properties of the surrounding lipid matrix. In particular, transbilayer asymmetry, a hallmark of all plasma membranes, might be exploited to control membrane-protein activity. Here, we hypothesized that the membrane-embedded enzyme outer membrane phospholipase A (OmpLA) is susceptible to the lateral pressure differences that build up between such asymmetric membrane leaflets. Upon reconstituting OmpLA into synthetic, chemically well-defined phospholipid bilayers exhibiting different lateral pressure profiles, we indeed observed a substantial decrease in the enzyme's hydrolytic activity with increasing membrane asymmetry. No such effects were observed in symmetric mixtures of the same lipids. To quantitatively rationalize how the differential stress in asymmetric lipid bilayers inhibits OmpLA, we developed a simple allosteric model within the lateral pressure framework. Thus, we find that membrane asymmetry can serve as the dominant factor in controlling membrane-protein activity, even in the absence of specific, chemical cues or other physical membrane determinants such as hydrophobic mismatch.

2.
Biophys J ; 122(12): 2445-2455, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37120716

ABSTRACT

We studied the mechanical leaflet coupling of prototypic mammalian plasma membranes using neutron spin-echo spectroscopy. In particular, we examined a series of asymmetric phospholipid vesicles with phosphatidylcholine and sphingomyelin enriched in the outer leaflet and inner leaflets composed of phosphatidylethanolamine/phosphatidylserine mixtures. The bending rigidities of most asymmetric membranes were anomalously high, exceeding even those of symmetric membranes formed from their cognate leaflets. Only asymmetric vesicles with outer leaflets enriched in sphingolipid displayed bending rigidities in conformity with these symmetric controls. We performed complementary small-angle neutron and x-ray experiments on the same vesicles to examine possible links to structural coupling mechanisms, which would show up in corresponding changes in membrane thickness. In addition, we estimated differential stress between leaflets originating either from a mismatch of their lateral areas or spontaneous curvatures. However, no correlation with asymmetry-induced membrane stiffening was observed. To reconcile our findings, we speculate that an asymmetric distribution of charged or H-bond forming lipids may induce an intraleaflet coupling, which increases the weight of hard undulatory modes of membrane fluctuations and hence the overall membrane stiffness.


Subject(s)
Phosphatidylcholines , Phospholipids , Animals , Cell Membrane/chemistry , Phospholipids/chemistry , Membranes , Phosphatidylcholines/chemistry , Sphingomyelins , Lipid Bilayers/chemistry , Mammals
3.
Biophys Chem ; 296: 107002, 2023 05.
Article in English | MEDLINE | ID: mdl-36921495

ABSTRACT

Detergents are valuable tools to extract membrane proteins for biophysical, biochemical, and structural scrutiny. The detergent-driven solubilization of bilayers made from a single lipid species is commonly described in terms of pseudo-phase diagrams and a three-stage model accounting for three ranges comprising (i) intact vesicles, (ii) vesicle/micelle co-existence, or (iii) mixed micelles. Moreover, the pseudo-phase boundaries thus determined can often be quantitatively rationalized in terms of the molecular shapes of the lipid and the detergent used. Yet, it has remained unclear to what extent this approach can be applied to multi-component lipid membranes that more closely mimic the compositional complexity of cellular membranes. Here, we studied how lipid mixtures composed of palmitoyl oleoyl phosphatidylethanolamine (POPE), palmitoyl oleoyl phosphatidylglycerol (POPG), and tetraoleoyl cardiolipin (TOCL) are solubilized by the commonly used zwitterionic detergent lauryldimethylamine N-oxide using isothermal titration calorimetry. While phase diagrams of the diverse lipid mixtures showed the typical ranges of the three-stage model, we found that POPG-rich POPE/POPG bilayers are more difficult to solubilize than POPG-poor POPE/POPG bilayers. In turn, POPE/POPG/TOCL bilayers became increasingly resistant to detergent with increasing TOCL content. Since POPG is nearly cylindrically shaped and TOCL adopts inverted cone-like shapes under current buffer conditions, our solubilization data do not align with shape-based arguments. Instead, additional electrostatic interactions between lipids and detergents lead to non-additive mixing behavior affecting the resilience of complex lipid bilayers against solubilization.


Subject(s)
Detergents , Lipid Bilayers , Detergents/chemistry , Lipid Bilayers/chemistry , Cell Membrane/metabolism , Cardiolipins , Calorimetry , Micelles
4.
Biomolecules ; 12(9)2022 09 07.
Article in English | MEDLINE | ID: mdl-36139091

ABSTRACT

The need for alternative treatment of multi-drug-resistant bacteria led to the increased design of antimicrobial peptides (AMPs). AMPs exhibit a broad antimicrobial spectrum without a distinct preference for a specific species. Thus, their mechanism, disruption of fundamental barrier function by permeabilization of the bacterial cytoplasmic membrane is considered to be rather general and less likely related to antimicrobial resistance. Of all physico-chemical properties of AMPs, their positive charge seems to be crucial for their interaction with negatively charged bacterial membranes. Therefore, we elucidate the role of electrostatic interaction on bacterial surface neutralization and on membrane disruption potential of two potent antimicrobial peptides, namely, OP-145 and SAAP-148. Experiments were performed on Escherichia coli, a Gram-negative bacterium, and Enterococcus hirae, a Gram-positive bacterium, as well as on their model membranes. Zeta potential measurements demonstrated that both peptides neutralized the surface charge of E. coli immediately after their exposure, but not of E. hirae. Second, peptides neutralized all model membranes, but failed to efficiently disrupt model membranes mimicking Gram-negative bacteria. This was further confirmed by flow cytometry showing reduced membrane permeability for SAAP-148 and the lack of OP-145 to permeabilize the E. coli membrane. As neutralization of E. coli surface charges was achieved before the cells were killed, we conclude that electrostatic forces are more important for actions on the surface of Gram-negative bacteria than on their cytoplasmic membranes.


Subject(s)
Antimicrobial Peptides , Escherichia coli , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Membrane , Gram-Negative Bacteria , Microbial Sensitivity Tests , Peptides/chemistry , Static Electricity
5.
Appl Environ Microbiol ; 88(10): e0018022, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35481757

ABSTRACT

The antimicrobial killing mechanism of octenidine (OCT), a well-known antiseptic is poorly understood. We recently reported its interaction with Gram-negative bacteria by insertion of OCT into the outer and cytoplasmic membrane of Escherichia coli, resulting in a chaotic lipid rearrangement and rapid disruption of the cell envelope. Its action primarily disturbs the packing order of the hydrophobic moiety of a lipid, which consequently might result in a cascade of multiple effects at a cellular level. Here, we investigated OCT's impact on two different Gram-positive bacteria, Enterococcus hirae and Bacillus subtilis, and their respective model membranes. In accordance with our previous results, OCT induced membrane disorder in all investigated model systems. Electron and fluorescence microscopy clearly demonstrated changes in cellular structure and membrane integrity. These changes were accompanied by neutralization of the surface charge in both E. hirae and B. subtilis and membrane disturbances associated with permeabilization. Similar permeabilization and disordering of the lipid bilayer was also observed in model membranes. Furthermore, experiments performed on strongly versus partly anionic membranes showed that the lipid disordering effect induced by OCT is a result of maximized hydrophobic over electrostatic forces without distinct neutralization of the surface charge or discrimination between the lipid head groups. Indeed, mutants lacking specific lipid head groups were also susceptible to OCT to a similar extent as the wild type. The observed unspecific mode of action of OCT underlines its broad antimicrobial profile and renders the development of bacterial resistance to this molecule less likely. IMPORTANCE OCT is a well-established antiseptic molecule routinely used in a large field of clinical applications. Since the spread of antimicrobial resistance has restricted the use of antibiotics worldwide, topically applied antiseptics like OCT, with a broad spectrum of antimicrobial activity and high safety profile, gain increasing importance for effective infection prevention and therapy. To eliminate a wide spectrum of disease-causing microorganisms, a compound's antiseptic activity should be unspecific or multitarget. Our results demonstrate an unspecific mechanism of action for OCT, which remained largely unknown for years. OCT disturbs the barrier function of a bacterial cell, a function that is absolutely fundamental for survival. Because OCT does not distinguish between lipids, the building blocks of bacterial membranes, its mode of action might be attributed to all bacteria, including (multi)drug-resistant isolates. Our results underpin OCT's potent antiseptic activity for successful patient outcome.


Subject(s)
Anti-Infective Agents, Local , Anti-Bacterial Agents/metabolism , Anti-Infective Agents, Local/pharmacology , Bacillus subtilis , Cell Membrane/metabolism , Escherichia coli , Gram-Positive Bacteria , Humans , Imines , Lipids/pharmacology , Microbial Sensitivity Tests , Pyridines
6.
J Membr Biol ; 255(4-5): 407-421, 2022 10.
Article in English | MEDLINE | ID: mdl-35471665

ABSTRACT

We studied the transleaflet coupling of compositionally asymmetric liposomes in the fluid phase. The vesicles were produced by cyclodextrin-mediated lipid exchange and contained dipalmitoyl phosphatidylcholine (DPPC) in the inner leaflet and different mixed-chain phosphatidylcholines (PCs) as well as milk sphingomyelin (MSM) in the outer leaflet. In order to jointly analyze the obtained small-angle neutron and X-ray scattering data, we adapted existing models of trans-bilayer structures to measure the overlap of the hydrocarbon chain termini by exploiting the contrast of the terminal methyl ends in X-ray scattering. In all studied systems, the bilayer-asymmetry has large effects on the lipid packing density. Fully saturated mixed-chain PCs interdigitate into the DPPC-containing leaflet and evoke disorder in one or both leaflets. The long saturated acyl chains of MSM penetrate even deeper into the opposing leaflet, which in turn has an ordering effect on the whole bilayer. These results are qualitatively understood in terms of a balance of entropic repulsion of fluctuating hydrocarbon chain termini and van der Waals forces, which is modulated by the interdigitation depth. Monounsaturated PCs in the outer leaflet also induce disorder in DPPC despite vestigial or even absent interdigitation. Instead, the transleaflet coupling appears to emerge here from a matching of the inner leaflet lipids to the larger lateral lipid area of the outer leaflet lipids.


Subject(s)
Cyclodextrins , Sphingomyelins , Sphingomyelins/chemistry , 1,2-Dipalmitoylphosphatidylcholine , Lipid Bilayers/chemistry , Liposomes , Phosphatidylcholines/chemistry
7.
Biomolecules ; 12(4)2022 03 30.
Article in English | MEDLINE | ID: mdl-35454112

ABSTRACT

The development of antimicrobial agents against multidrug-resistant bacteria is an important medical challenge. Antimicrobial peptides (AMPs), human cathelicidin LL-37 and its derivative OP-145, possess a potent antimicrobial activity and were under consideration for clinical trials. In order to overcome some of the challenges to their therapeutic potential, a very promising AMP, SAAP-148 was designed. Here, we studied the mode of action of highly cationic SAAP-148 in comparison with OP-145 on membranes of Enterococcus hirae at both cellular and molecular levels using model membranes composed of major constituents of enterococcal membranes, that is, anionic phosphatidylglycerol (PG) and cardiolipin (CL). In all assays used, SAAP-148 was consistently more efficient than OP-145, but both peptides displayed pronounced time and concentration dependences in killing bacteria and performing at the membrane. At cellular level, Nile Red-staining of enterococcal membranes showed abnormalities and cell shrinkage, which is also reflected in depolarization and permeabilization of E. hirae membranes. At the molecular level, both peptides abolished the thermotropic phase transition and induced disruption of PG/CL. Interestingly, the membrane was disrupted before the peptides neutralized the negative surface charge of PG/CL. Our results demonstrate that SAAP-148, which kills bacteria at a significantly lower concentration than OP-145, shows stronger effects on membranes at the cellular and molecular levels.


Subject(s)
Antimicrobial Peptides , Enterococcus hirae , Anti-Bacterial Agents/chemistry , Cell Membrane/metabolism , Drug Resistance, Multiple, Bacterial , Humans , Microbial Sensitivity Tests , Phosphatidylglycerols
8.
J Phys Chem B ; 125(45): 12457-12465, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34730965

ABSTRACT

Morphological and gel-to-liquid phase transitions of lipid membranes are generally considered to primarily depend on the structural motifs in the hydrophobic core of the bilayer. Structural changes in the aqueous headgroup phase are typically not considered, primarily because they are difficult to quantify. Here, we investigate structural changes of the hydration shells around large unilamellar vesicles (LUVs) in aqueous solution, using differential scanning calorimetry (DSC), and temperature-dependent ζ-potential and high-throughput angle-resolved second harmonic scattering measurements (AR-SHS). Varying the lipid composition from 1,2-dimyristoyl-sn-glycero-3-phosphocholine(DMPC) to 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), to 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (DMPS), we observe surprisingly distinct behavior for the different systems that depend on the chemical composition of the hydrated headgroups. These differences involve changes in hydration following temperature-induced counterion redistribution, or changes in hydration following headgroup reorientation and Stern layer compression.


Subject(s)
Lipid Bilayers , Water , Calorimetry, Differential Scanning , Dimyristoylphosphatidylcholine , Unilamellar Liposomes
SELECTION OF CITATIONS
SEARCH DETAIL
...