Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sex Transm Infect ; 99(6): 409-415, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37156608

ABSTRACT

INTRODUCTION: Polyphenylene carboxymethylene (PPCM) is a condensation polymer that has both contraceptive and antimicrobial activity against several sexually transmitted viruses including HIV, herpes simplex virus, Ebola virus and SARS-CoV-2 in preclinical studies. PPCM, both as an active pharmaceutical ingredient (API) and in a vaginal gel formulation (Yaso-GEL), has an excellent safety profile. Here, we evaluated the efficacy of PPCM against Neisseria gonorrhoeae in vitro and in a gonorrhoea mouse model. METHODS: The minimal inhibitory concentration (MIC) of PPCM was determined against 11 N. gonorrhoeae strains by agar dilution and a microtitre plate-based method. In vivo efficacy was tested in a murine model of N. gonorrhoeae genital tract infection by applying Yaso-GEL, PPCM incorporated in 2.7% hydroxyethylcellulose (HEC), or the HEC vehicle vaginally prior to challenge with N. gonorrhoeae. Vaginal swabs were quantitatively cultured over 5 days to assess efficacy. RESULTS: PPCM MIC against N. gonorrhoeae ranged between 5-100 µg/mL (agar dilution) and 50-200 µg/mL (microtitre plate method). PPCM/HEC gel applied vaginally prior to bacterial challenge resulted in a concentration-dependent inhibition of infection. Yaso-GEL containing 4% PPCM prevented infection in 100% of mice. Incubation of N. gonorrhoeae with PPCM increased membrane permeability, suggesting PPCM directly compromises N. gonorrhoeae viability, which may be a mechanism by which PPCM inhibits N. gonorrhoeae infection. CONCLUSIONS: Yaso-GEL containing the API PPCM showed significant activity against N. gonorrhoeae in vitro and in vivo in a female mouse model. These data support further development of Yaso-GEL as an inexpensive, non-hormonal and non-systemic product with both contraceptive and antimicrobial activity against gonorrhea and other common sexually transmitted infections (STIs). Such multipurpose prevention technology products are needed by women in all economic, social and cultural circumstances to prevent unintended pregnancy and STIs.


Subject(s)
Gonorrhea , Sexually Transmitted Diseases , Female , Humans , Animals , Mice , Neisseria gonorrhoeae , Anti-Bacterial Agents/therapeutic use , Contraceptive Agents/therapeutic use , Agar/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/microbiology , Polymers/pharmacology , Polymers/therapeutic use , Microbial Sensitivity Tests
2.
J Infect Dis ; 224(12 Suppl 2): S152-S160, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34396408

ABSTRACT

Murine models of Neisseria gonorrhoeae lower reproductive tract infection are valuable systems for studying N. gonorrhoeae adaptation to the female host and immune responses to infection. These models have also accelerated preclinical testing of candidate therapeutic and prophylactic products against gonorrhea. However, because N. gonorrhoeae infection is restricted to the murine cervicovaginal region, there is a need for an in vivo system for translational work on N. gonorrhoeae pelvic inflammatory disease (PID). Here we discuss the need for well-characterized preclinical upper reproductive tract infection models for developing candidate products against N. gonorrhoeae PID, and report a refinement of the gonorrhea mouse model that supports sustained upper reproductive tract infection. To establish this new model for vaccine testing, we also tested the licensed meningococcal 4CMenB vaccine, which cross-protects against murine N. gonorrhoeae lower reproductive tract infection, for efficacy against N. gonorrhoeae in the endometrium and oviducts following transcervical or vaginal challenge.


Subject(s)
Anti-Infective Agents/administration & dosage , Gonorrhea/prevention & control , Pelvic Inflammatory Disease/prevention & control , Reproductive Tract Infections/microbiology , Animals , Disease Models, Animal , Female , Gonorrhea/drug therapy , Mice , Neisseria gonorrhoeae/immunology , Pelvic Inflammatory Disease/microbiology
3.
Cell Host Microbe ; 26(2): 228-239.e8, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31378677

ABSTRACT

The mucosa is colonized with commensal Neisseria. Some of these niches are sites of infection for the STD pathogen Neisseria gonorrhoeae (Ngo). Given the antagonistic behavior of commensal bacteria toward their pathogenic relatives, we hypothesized that commensal Neisseria may negatively affect Ngo colonization. Here, we report that commensal species of Neisseria kill Ngo through a mechanism based on genetic competence and DNA methylation state. Specifically, commensal-triggered killing occurs when the pathogen takes up commensal DNA containing a methylation pattern that it does not recognize. Indeed, any DNA will kill Ngo if it can enter the cell, is differentially methylated, and has homology to the pathogen genome. Consistent with these findings, commensal Neisseria elongata accelerates Ngo clearance from the mouse in a DNA-uptake-dependent manner. Collectively, we propose that commensal Neisseria antagonizes Ngo infection through a DNA-mediated mechanism and that DNA is a potential microbicide against this highly drug-resistant pathogen.


Subject(s)
DNA, Bacterial/metabolism , Neisseria gonorrhoeae/growth & development , Neisseria/physiology , Symbiosis , Animals , Antibiosis/physiology , Coculture Techniques , Colony Count, Microbial , DNA Damage , DNA Methylation , Female , Mice , Mice, Inbred BALB C , Models, Animal , Neisseria/genetics , Neisseria gonorrhoeae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...