Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 119(28): 7668-82, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-25992467

ABSTRACT

Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300-900 K, have been corrected for errors in the absorption coefficients used in the original publication ( Slagle et al., J. Phys. Chem. 1988 , 92 , 2455 - 2462 ). These corrections necessitated the development of a detailed model of the B̃(2)A1' (3s)-X̃(2)A2″ transition in CH3 and its validation against both low temperature and high temperature experimental absorption cross sections. A master equation (ME) model was developed, using a local linearization of the second-order decay, which allows the use of standard matrix diagonalization methods for the determination of the rate coefficients for CH3 + CH3. The ME model utilized inverse Laplace transformation to link the microcanonical rate constants for dissociation of C2H6 to the limiting high pressure rate coefficient for association, k∞(T); it was used to fit the experimental rate coefficients using the Levenberg-Marquardt algorithm to minimize χ(2) calculated from the differences between experimental and calculated rate coefficients. Parameters for both k∞(T) and for energy transfer ⟨ΔE⟩down(T) were varied and optimized in the fitting procedure. A wide range of experimental data were fitted, covering the temperature range 300-2000 K. A high pressure limit of k∞(T) = 5.76 × 10(-11)(T/298 K)(-0.34) cm(3) molecule(-1) s(-1) was obtained, which agrees well with the best available theoretical expression.

2.
J Phys Chem A ; 119(28): 7430-8, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-25774572

ABSTRACT

Statistical rate theory calculations, in particular formulations of the chemical master equation, are widely used to calculate rate coefficients of interest in combustion environments as a function of temperature and pressure. However, despite the increasing accuracy of electronic structure calculations, small uncertainties in the input parameters for these master equation models can lead to relatively large uncertainties in the calculated rate coefficients. Master equation input parameters may be constrained further by using experimental data and the relationship between experiment and theory warrants further investigation. In this work, the CH3OCH2 + O2 system, of relevance to the combustion of dimethyl ether (DME), is used as an example and the input parameters for master equation calculations on this system are refined through fitting to experimental data. Complementing these fitting calculations, global sensitivity analysis is used to explore which input parameters are constrained by which experimental conditions, and which parameters need to be further constrained to accurately predict key elementary rate coefficients. Finally, uncertainties in the calculated rate coefficients are obtained using both correlated and uncorrelated distributions of input parameters.

3.
J Phys Chem A ; 118(34): 6773-88, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25069059

ABSTRACT

The methoxymethyl radical, CH3OCH2, is an important intermediate in the low temperature combustion of dimethyl ether. The kinetics and yields of OH from the reaction of the methoxymethyl radical with O2 have been measured over the temperature and pressure ranges of 195-650 K and 5-500 Torr by detecting the hydroxyl radical using laser-induced fluorescence following the excimer laser photolysis (248 nm) of CH3OCH2Br. The reaction proceeds via the formation of an energized CH3OCH2O2 adduct, which either dissociates to OH + 2 H2CO or is collisionally stabilized by the buffer gas. At temperatures above 550 K, a secondary source of OH was observed consistent with thermal decomposition of stabilized CH3OCH2O2 radicals. In order to quantify OH production from the CH3OCH2 + O2 reaction, extensive relative and absolute OH yield measurements were performed over the same (T, P) conditions as the kinetic experiments. The reaction was studied at sufficiently low radical concentrations (∼10(11) cm(-3)) that secondary (radical + radical) reactions were unimportant and the rate coefficients could be extracted from simple bi- or triexponential analysis. Ab initio (CBS-GB3)/master equation calculations (using the program MESMER) of the CH3OCH2 + O2 system were also performed to better understand this combustion-related reaction as well as be able to extrapolate experimental results to higher temperatures and pressures. To obtain agreement with experimental results (both kinetics and yield data), energies of the key transition states were substantially reduced (by 20-40 kJ mol(-1)) from their ab initio values and the effect of hindered rotations in the CH3OCH2 and CH3OCH2OO intermediates were taken into account. The optimized master equation model was used to generate a set of pressure and temperature dependent rate coefficients for the component nine phenomenological reactions that describe the CH3OCH2 + O2 system, including four well-skipping reactions. The rate coefficients were fitted to Chebyshev polynomials over the temperature and density ranges 200 to 1000 K and 1 × 10(17) to 1 × 10(23) molecules cm(-3) respectively for both N2 and He bath gases. Comparisons with an existing autoignition mechanism show that the well-skipping reactions are important at a pressure of 1 bar but are not significant at 10 bar. The main differences derive from the calculated rate coefficient for the CH3OCH2OO → CH2OCH2OOH reaction, which leads to a faster rate of formation of O2CH2OCH2OOH.


Subject(s)
Hydroxyl Radical/chemistry , Oxygen/chemistry , Algorithms , Computer Simulation , Fluorescence , Helium/chemistry , Kinetics , Lasers , Models, Chemical , Nitrogen/chemistry , Pressure , Temperature
4.
J Phys Chem A ; 117(44): 11142-54, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24102528

ABSTRACT

The reaction of OH with dimethyl ether (CH3OCH3) has been studied from 195 to 850 K using laser flash photolysis coupled to laser induced fluorescence detection of OH radicals. The rate coefficient from this work can be parametrized by the modified Arrhenius expression k = (1.23 ± 0.46) × 10(-12) (T/298)(2.05±0.23) exp((257 ± 107)/T) cm(3) molecule(-1) s(-1). Including other recent literature data (923-1423 K) gives a modified Arrhenius expression of k1 = (1.54 ± 0.48) × 10(-12) (T/298 K)(1.89±0.16) exp((184 ± 112)/T) cm(3) molecule(-1) s(-1) over the range 195-1423 K. Various isotopomeric combinations of the reaction have also been investigated with deuteration of dimethyl ether leading to a normal isotope effect. Deuteration of the hydroxyl group leads to a small inverse isotope effect. To gain insight into the reaction mechanisms and to support the experimental work, theoretical studies have also been undertaken calculating the energies and structures of the transition states and complexes using high level ab initio methods. The calculations also identify pre- and post-reaction complexes. The calculations show that the pre-reaction complex has a binding energy of ~22 kJ mol(-1). Stabilization into the complex could influence the kinetics of the reaction, especially at low temperatures (<300 K), but there is no direct evidence of this occurring under the experimental conditions of this study. The experimental data have been modeled using the recently developed MESMER (master equation solver for multi energy well reactions) code; the calculated rate coefficients lie within 16% of the experimental values over the temperature range 200-1400 K with a model based on a single transition state. This model also qualitatively reproduces the observed isotope effects, agreeing closely above ~600 K but overestimating them at low temperatures. The low temperature differences may derive from an inadequate treatment of tunnelling and/or from an enhanced role of an outer transition state leading to the pre-reaction complex.

5.
J Phys Chem A ; 114(35): 9413-24, 2010 Sep 09.
Article in English | MEDLINE | ID: mdl-20704298

ABSTRACT

The rate coefficients for the removal of the excited state of methylene, (1)CH(2) (a(1)A(1)), by acetylene, ethene, and propene have been studied over the temperature range 195-798 K by laser flash photolysis, with (1)CH(2) being monitored by laser-induced fluorescence. The rate coefficients of all three reactions exhibit a negative temperature dependence that can be parametrized as k((1)CH(2)+C(2)H(2)) = (3.06 +/- 0.11) x 10(-10) T ((-0.39+/-0.07)) cm(3) molecule(-1) s(-1), k((1)CH(2)+C(2)H(4)) = (2.10 +/- 0.18) x 10(-10) T ((-0.84+/-0.18)) cm(3) molecule(-1) s(-1), k((1)CH(2)+C(3)H(6)) = (3.21 +/- 0.02) x 10(-10) T ((-0.13+/-0.01)) cm(3) molecule(-1) s(-1), where the errors are statistical at the 2sigma level. Removal of (1)CH(2) occurs by chemical reaction and electronic relaxation to ground state triplet methylene. The H atom yields from the reactions of (1)CH(2) with acetylene, ethene, and propene have been determined by laser-induced fluorescence over the temperature range 298-498 K. For the reaction with propene, H atom yields are close to the detection limit, but for acetylene and ethene, the fraction of H atom production is approximately 0.88 and 0.71, respectively, at 298 K, rising to unity by 398 K, with the balance of the reaction with acetylene presumed to be electronic relaxation. Experimental constraints limit studies to a maximum of 1 Torr of bath gas; master equation calculations using an approach that allows treatment of intermediates with deep energy wells have been carried out to explore the role of collisional stabilization for the reaction of (1)CH(2) with acetylene. Stabilization is calculated to be insignificant under the experimental conditions, but does become significant at higher pressures. Between pressures of 100 and 1000 Torr, propyne and allene are formed in similar amounts with a slight preference for propyne. At higher pressures propyne formation becomes about a factor two greater than that of allene, and above 10(5) Torr (300 < T (K) < 600) cyclopropene formation starts to become significant. The implications of temperature-dependent (1)CH(2) relaxation on the roles of (1)CH(2) in chemical mechanisms for soot formation are discussed.


Subject(s)
Acetylene/chemistry , Alkenes/chemistry , Ethylenes/chemistry , Temperature , Computer Simulation , Kinetics , Molecular Structure
6.
J Chem Phys ; 132(2): 024302, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20095669

ABSTRACT

Collisional quenching of electronically excited states by inert gases is a fundamental physical process. For reactive excited species such as singlet methylene, (1)CH(2), the competition between relaxation and reaction has important implications in practical systems such as combustion. The gateway model has previously been applied to the relaxation of (1)CH(2) by inert gases [U. Bley and F. Temps, J. Chem. Phys. 98, 1058 (1993)]. In this model, gateway states with mixed singlet and triplet character allow conversion between the two electronic states. The gateway model makes very specific predictions about the relative relaxation rates of ortho and para quantum states of methylene at low temperatures; relaxation from para gateway states leads to faster deactivation independent of the nature of the collision partner. Experimental data are reported here which for the first time confirm these predictions at low temperatures for helium. However, it was found that in contrast with the model predictions, the magnitude of the effect decreases with increasing size of the collision partner. It is proposed that the attractive potential energy surface for larger colliders allows alternative gateway states to contribute to relaxation removing the dominance of the para gateway states.

7.
J Phys Chem A ; 112(39): 9575-83, 2008 Oct 02.
Article in English | MEDLINE | ID: mdl-18714945

ABSTRACT

The reactions of singlet methylene (a(1)A1 (1)CH2) with hydrogen and deuterium have been studied by experimental and theoretical techniques. The rate coefficients for the removal of singlet methylene with H2 (k1) and D2 (k2) have been measured from 195 to 798 K and are essentially temperature-independent with values of k1 = (10.48 +/- 0.32) x 10(-11) cm(3) molecule(-1) s(-1) and k2 = (5.98 +/- 0.34) x 10(-11) cm(3) molecule(-1) s(-1), where the errors represent 2sigma, giving a ratio of k1/k2 = 1.75 +/- 0.11. In the reaction with H2, singlet methylene can be removed by reaction giving CH3 + H or deactivated to ground-state triplet methylene. Direct measurement of the H atom product showed that the fraction of relaxation decreased from 0.3 at 195 K to essentially zero at 398 K. For the reaction with deuterium, either H or D may be eliminated. Experimentally, the H:D ratio was determined to be 1.8 +/- 0.5 over the range 195-398 K. Theoretically, the reaction kinetics has been predicted with variable reaction coordinate transition state theory and with rigid-body trajectory simulations employing various high-level, ab initio-determined potential energy surfaces. The magnitudes of the calculated rate coefficients are in agreement with experiment, but the calculations show a significant negative temperature dependence that is not observed in the experimental results. The calculated and experimental H to D ratios from the reaction of singlet methylene with D2 are in good agreement, suggesting that the reaction proceeds entirely through the formation of a long-lived methane intermediate with a statistical distribution of energy.

8.
Phys Chem Chem Phys ; 8(18): 2172-8, 2006 May 14.
Article in English | MEDLINE | ID: mdl-16751875

ABSTRACT

The kinetics of chlorine atom abstractions from normal and selectively deuterated propane and isobutane have been measured at room temperature and 195 K using a laser flash photolysis system, and following the course of the reaction via IR diode laser absorption measurements of HCl product. In conjunction with the kinetic measurements, a comparison of the HCl signal heights from pairs of measurements on normal and selectively deuterated systems has allowed the determination of the branching fractions of the reactions at the primary, secondary (propane) and tertiary (isobutane) positions. The kinetic data (all in units of cm(3) molecule(-1) s(-1)) for the reaction of Cl atoms with propane ((1.22 +/- 0.02) x10(-10), 195 K; (1.22 +/- 0.03) x10(-10) 298 K) and isobutane ((1.52 +/- 0.02) x10(-10), 195 K; (1.25 +/- 0.04) x10(-10), 298 K) are generally in good agreement with literature data. No data are available for comparison with our measurements for the reactions of Cl atoms with CH(3)CD(2)CH(3) ((1.02 +/- 0.03) x10(-10), 195 K; (1.09 +/- 0.02) x10(-10), 298 K) or (CH(3))(3)CD ((1.32 +/- 0.03) x10(-10), 195 K; (1.12 +/- 0.04) x10(-10), 298 K). Rate coefficients at 195 K for the reactions of Cl atoms with ethane ((5.04 +/- 0.08) x10(-11) and n-butane ((2.19 +/- 0.03) x10(-10)) were also measured. The branching fractions for abstraction at the primary position increased with temperature for both propane ((40 +/- 3)% at 195 K to (48 +/- 3)% at 298 K) and isobutane ((49 +/- 4)% at 195 K to (62 +/- 5)% at 298 K). The direct measurements from this study are in good agreement with most calculations based on structure activity relationships.


Subject(s)
Butanes/chemistry , Chlorine/chemistry , Hydrogen/chemistry , Propane/chemistry , Spectrophotometry, Infrared/methods , Kinetics , Lasers , Models, Chemical , Photolysis , Temperature
9.
Sci Total Environ ; 360(1-3): 5-25, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16289266

ABSTRACT

The PUMA (Pollution of the Urban Midlands Atmosphere) Consortium project involved intensive measurement campaigns in the Summer of 1999 and Winter of 1999/2000, respectively, in which a wide variety of air pollutants were measured in the UK West Midlands conurbation including detailed speciation of VOCs and major component analysis of aerosol. Measurements of the OH and HO2 free radicals by the FAGE technique demonstrated that winter concentrations of OH were approximately half of those measured during the summer despite a factor of 15 reduction in production through the photolysis of ozone. Detailed box modelling of the fast reaction chemistry revealed the decomposition of Criegee intermediates formed from ozone-alkene reactions to be responsible for the majority of the formation of hydroxyl in both the summer and winter campaigns, in contrast to earlier rural measurements in which ozone photolysis was predominant. The main sinks for hydroxyl are reactions with NO2, alkenes and oxygenates. Concentrations of the more stable hydrocarbons were found to be relatively invariant across the conurbation, but the impacts of photochemistry were evident through analyses of formaldehyde which showed the majority to be photochemical in origin as opposed to emitted from road traffic. Measurements on the upwind and downwind boundaries of the conurbation revealed substantial enhancements in NOx as a result of emissions within the conurbation, especially during westerly winds which carried relatively clean air. Using calcium as a tracer for crustal particles, it proved possible to reconstruct aerosol mass from the major chemical components with a fairly high degree of success. The organic to elemental carbon ratios showed a far greater influence of photochemistry in summer than winter, presumably resulting mainly from the greater availability of biogenic precursors during the summer campaign. Two urban airshed models were developed and applied to the conurbation, one Eulerian, the other Lagrangian. Both were able to give a good simulation of concentrations of both primary and secondary pollutants at urban background locations.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Models, Theoretical , Acetone/analysis , Aerosols/analysis , Carbon Monoxide/analysis , Environmental Monitoring , Formaldehyde/analysis , Free Radicals/analysis , Hydrocarbons/analysis , Nitrogen Oxides/analysis , Ozone/analysis , Particle Size , Peracetic Acid/analogs & derivatives , Peracetic Acid/analysis , Photochemistry , Reproducibility of Results , United Kingdom
10.
J Air Waste Manag Assoc ; 51(5): 699-707, 2001 May.
Article in English | MEDLINE | ID: mdl-11355457

ABSTRACT

A comprehensive description of the ozone-forming potentials of 101 organic compounds has been constructed under North American urban "averaged conditions" using a detailed master chemical mechanism and a simple air parcel trajectory model. This chemical mechanism describes the reactions of 3603 chemical species taking part in more than 10,500 chemical reactions. An index value has been calculated for each organic compound, which describes the increment in ozone concentrations found downwind of an urban area following the emission of a fixed increment in the mass emission of each organic compound. These indices, termed photochemical ozone creation potentials (POCPs), have been expressed on a scale relative to ethylene (ethene) = 100, and, a reactivity scale has been generated for alkanes, alkenes, and oxygenated and halogenated organic compounds. A high degree of correlation (R2 = 0.9) was found between these POCP values and the most widely accepted urban reactivity scale. While the reactivities of most of the 86 organic compounds compared fell within a consistent range, significant discrepancies were found for only 5 compounds. Single-day or multiday conditions appear to be important in establishing quantitative reactivity scales for the less reactive organic compounds.


Subject(s)
Models, Theoretical , Oxidants, Photochemical/chemistry , Ozone/chemistry , Ethylenes/chemistry , Organic Chemicals , Policy Making , Public Policy , Urban Population , Volatilization
11.
Faraday Discuss ; (120): 125-46; discussion 197-213, 2001.
Article in English | MEDLINE | ID: mdl-11901671

ABSTRACT

Ordinary differential equations derived from large nonlinear systems of chemical reactions are computationally expensive to solve because of the large number of coupled species and the large range of time-scales present. The range of time-scales often spans several orders of magnitude leading to stiff systems of equations requiring implicit numerical techniques. The use of slow manifolds for the description of long time-scale chemical processes has two advantages in that it reduces the number of variables required and also the stiffness of the chemical system by assuming that the fast time-scales are in local equilibrium with respect to the slower ones. The method exploits the existence of a low-dimensional manifold within a large-dimensional species phase space onto which the system quickly collapses. This paper investigates the existence of slow manifolds for nonlinear tropospheric chemical systems and presents a simple method for estimating the local dimension of the manifold using linear perturbation theory. The method is demonstrated for several tropospheric mechanisms over diurnal simulations including a subset of the Master Chemical Mechanism describing butane oxidation and the formation of ozone in the troposphere. It is shown that the intrinsic dimension of the slow manifold varies diurnally and depends on photolytic processes and the relative concentrations of major pollutants.

12.
J Environ Monit ; 1(5): 453-8, 1999 Oct.
Article in English | MEDLINE | ID: mdl-11529163

ABSTRACT

A method has been developed for the speciation and quantitative determination of hydrocarbons in urban air in the city of Leeds. Hydrocarbons were pre-concentrated by adsorbent tube air sampling and analyzed using thermal desorption and gas chromatography with flame ionization detection and structural confirmation by mass spectrometric detection. While automated volatile organic compound (VOC) analyzers produced data for a maximum of about 30 compounds simultaneously, with the method described here, a total of 68 C6-C12 hydrocarbons were measured simultaneously in one analysis at parts per billion (ppb) levels. Several monitoring surveys were performed, one during the winter of 1993 and the other in the summer of 1994, at a number of sites to investigate the levels of VOCs identified in the urban air of Leeds.


Subject(s)
Air Pollution/analysis , Environmental Monitoring/methods , Hydrocarbons/analysis , Absorption , Chromatography, Gas , Humans , Temperature , Urban Population , Volatilization
15.
N Z Nurs J ; 64(8): 25-6, 1971 Aug.
Article in English | MEDLINE | ID: mdl-5284599
SELECTION OF CITATIONS
SEARCH DETAIL
...