Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(8): 6081-6098, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38401050

ABSTRACT

In this work, we investigated the anticancer activity of several novel silver(I) 2,2'-bipyridine complexes containing either triphenylphosphane (PPh3) or 1,2-bis(diphenylphosphino)ethane (dppe) ligands. All compounds were characterized by diverse analytical methods including ESI-MS spectrometry; NMR, UV-vis, and FTIR spectroscopies; and elemental analysis. Moreover, several compounds were also studied by X-ray single-crystal diffraction. Subsequently, the compounds were investigated for their anticancer activity against drug-resistant and -sensitive cancer cells. Noteworthily, neither carboplatin and oxaliplatin resistance nor p53 deletion impacted on their anticancer efficacy. MES-OV cells displayed exceptional hypersensitivity to the dppe-containing drugs. This effect was not based on thioredoxin reductase inhibition, enhanced drug uptake, or apoptosis induction. In contrast, dppe silver drugs induced paraptosis, a novel recently described form of programmed cell death. Together with the good tumor specificity of this compound's class, this work suggests that dppe-containing silver complexes could be interesting drug candidates for the treatment of resistant ovarian cancer.


Subject(s)
2,2'-Dipyridyl , Antineoplastic Agents , Phosphines , Silver , Humans , Phosphines/chemistry , Phosphines/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Silver/chemistry , Silver/pharmacology , 2,2'-Dipyridyl/chemistry , 2,2'-Dipyridyl/pharmacology , Cell Line, Tumor , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Apoptosis/drug effects , Crystallography, X-Ray , Ligands , Cell Death/drug effects , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Drug Resistance, Neoplasm/drug effects
2.
J Inorg Biochem ; 249: 112386, 2023 12.
Article in English | MEDLINE | ID: mdl-37827090

ABSTRACT

Structure-activity studies aiming to understand the role of each coligand in the formulation of new metallodrugs is an important subject. In that frame, six new compounds with general formula [Fe(η5-C5H5)(dppe)(L)][CF3SO3] with L = benzonitriles (1-4) or carbon monoxide (5) and compound [Fe(η5-C5H5)(CO)(PPh3)2][CF3SO3] (6) were synthesized and compared with three other previously reported compounds [Fe(η5-C5H5)(CO)(L)(PPh3)][CF3SO3]. We were particularly interested in assessing the effect of dppe vs. (PPh3 + CO) for this set of compounds. For that, all compounds were tested against two human colon adenocarcinoma cell lines, Colo205 and the refractile Colo320 (expressing ABCB1, an efflux pump causing multidrug resistance), showing IC50 values in the micromolar range. The presence of dppe in the compound's coordination sphere over (PPh3 + CO) allows for more redox stable compounds showing higher cytotoxicity and selectivity, with improved cytotoxicity towards resistant cells that is not related to the inhibition of ABCB1. Further studies with GSH and H2O2 for selected compounds indicated that their antioxidant ability is not probably the main responsible for their cytotoxicity.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Colonic Neoplasms , Humans , Iron , Colonic Neoplasms/drug therapy , Cell Line, Tumor , Hydrogen Peroxide , Antineoplastic Agents/pharmacology , Ferrous Compounds/pharmacology
3.
Eur J Med Chem ; 256: 115466, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37187089

ABSTRACT

Five new iron (II) complexes bearing imidazole-based (Imi-R) ligands with the general formula [Fe(η5-C5H5)(CO)(PPh3)(Imi-R)][CF3SO3] were synthesized and fully characterized by several spectroscopic and analytical techniques. All compounds crystallize in centrosymmetric space groups in a typical "piano stool" distribution. Given the growing importance of finding alternatives to overcome different forms of multidrug resistance, all compounds were tested against cancer cell lines with different ABCB1 efflux pump expression, namely, the doxorubicin-sensitive (Colo205) and doxorubicin-resistant (Colo320) human colon adenocarcinoma cell lines. Compound 3 bearing 1-benzylimidazole was the most active in both cell lines with IC50 values of 1.26 ± 0.11 and 2.21 ± 0.26 µM, respectively, being also slightly selective against the cancer cells (vs. MRC5 normal human embryonic fibroblast cell lines). This compound, together with compound 2 bearing 1H-1,3-benzodiazole, were found to display very potent ABCB1 inhibitory effect. Compound 3 also showed the ability to induce cell apoptosis. Iron cellular accumulation studies by ICP-MS and ICP-OES methods revealed that the compounds' cytotoxicity is not related to the extent of iron accumulation. Yet, it is worth mentioning that, from the compounds tested, 3 was the only one where iron accumulation was greater in the resistant cell line than in the sensitive one, validating the possible role of ABCB1 inhibition in its mechanism of action.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Colonic Neoplasms , Organometallic Compounds , Humans , Iron , Adenocarcinoma/drug therapy , Colonic Neoplasms/drug therapy , Cell Line, Tumor , Organometallic Compounds/chemistry , Doxorubicin/pharmacology , Ferrous Compounds/pharmacology , Drug Resistance, Neoplasm , Antineoplastic Agents/chemistry , ATP Binding Cassette Transporter, Subfamily B
4.
Pharmaceutics ; 14(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35890283

ABSTRACT

The need for new therapeutic approaches for triple-negative breast cancer is a clinically relevant problem that needs to be solved. Using a multi-targeting approach to enhance cancer cell uptake, we synthesized a new family of ruthenium(II) organometallic complexes envisaging simultaneous active and passive targeting, using biotin and polylactide (PLA), respectively. All compounds with the general formula, [Ru(η5-CpR)(P)(2,2'-bipy-4,4'-PLA-biotin)][CF3SO3], where R is -H or -CH3 and P is P(C6H5)3, P(C6H4F)3 or P(C6H4OCH3)3, were tested against triple-negative breast cancer cells MDA-MB-231 showing IC50 values between 2.3-14.6 µM, much better than cisplatin, a classical chemotherapeutic drug, in the same experimental conditions. We selected compound 1 (where R is H and P is P(C6H5)3), for further studies as it was the one showing the best biological effect. In a competitive assay with biotin, we showed that cell uptake via SMVT receptors seems to be the main transport route into the cells for this compound, validating the strategy of including biotin in the design of the compound. The effects of the compound on the hallmarks of cancer show that the compound leads to apoptosis, interferes with proliferation by affecting the formation of cell colonies in a dose-dependent manner and disrupts the cell cytoskeleton. Preliminary in vivo assays in N: NIH(S)II-nu/nu mice show that the concentrations of compound 1 used in this experiment (maximum 4 mg/kg) are safe to use in vivo, although some signs of liver toxicity are already found. In addition, the new compound shows a tendency to control tumor growth, although not significantly. In sum, we showed that compound 1 shows promising anti-cancer effects, bringing a new avenue for triple-negative breast cancer therapy.

5.
Molecules ; 25(7)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235674

ABSTRACT

A family of compounds with the general formula [Fe(η5-C5H5)(CO)(PPh3)(NCR)]+ has been synthesized (NCR = benzonitrile (1); 4-hydroxybenzonitrile (2); 4-hydroxymethylbenzonitrile (3); 4-aminobenzonitrile (4); 4-bromobenzonitrile (5); and, 4-chlorocinnamonitrile (6)). All of the compounds were obtained in good yields and were completely characterized by standard spectroscopic and analytical techniques. Compounds 1, 4, and 5 crystallize in the monoclinc P21/c space group and packing is determined by short contacts between the phosphane phenyl rings and cyclopentadienyl (compounds 1 and 4) or π-π lateral interactions between the benzonitrile molecules (complex 5). DFT and TD-DFT calculations were performed to help in the interpretation of the experimental UV-Vis. data and assign the electronic transitions. Cytotoxicity studies in MDA-MB-231 breast and SW480 colorectal cancer-derived cell lines showed IC50 values at a low micromolar range for all of the compounds in both cell lines. The determination of the selectivity index for colorectal cells (SW480 vs. NCM460, a normal colon-derived cell line) indicates that the compounds have some inherent selectivity. Further studies on the SW480 cell line demonstrated that the compounds induce cell death by apoptosis, inhibit proliferation by inhibiting the formation of colonies, and affect the actin-cytoskeleton of the cells. These results are not observed for the hydroxylated compounds 2 and 3, where an alternative mode of action might be present. Overall, the results indicate that the substituent at the nitrile-based ligand is associated to the biological activity of the compounds.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms/drug therapy , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Ferrous Compounds/chemical synthesis , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Humans , Male , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
6.
Inorg Chem ; 58(14): 9135-9149, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31241925

ABSTRACT

Prospective anticancer metallodrugs should consider target-specific components in their design in order to overcome the limitations of the current chemotherapeutics. The inclusion of vitamins, which receptors are overexpressed in many cancer cell lines, has proven to be a valid strategy. Therefore, in this paper we report the synthesis and characterization of a set of new compounds [Ru(η5-C5H5)(P(C6H4R)3)(4,4'-R'-2,2'-bpy)]+ (R = F and R' = H, 3; R = F and R' = biotin, 4; R = OCH3 and R' = H, 5; R = OCH3 and R' = biotin, 6), inspired by the exceptional good results recently obtained for the analogue bearing a triphenylphosphane ligand. The precursors for these syntheses were also described following modified literature procedures, [Ru(η5-C5H5)(P(C6H4R)3)2Cl], where R is -F (1) or -OCH3 (2). The structure of all compounds is fully supported by spectroscopic and analytical techniques and by X-ray diffraction studies for compounds 2, 3, and 5. All cationic compounds are cytotoxic in the two breast cancer cell lines tested, MCF7 and MDA-MB-231, and much better than cisplatin under the same experimental conditions. The cytotoxicity of the biotinylated compounds seems to be related with the Ru uptake by the cells expressing biotin receptors, indicating a potential mediated uptake. Indeed, a biotin-avidin study confirmed that the attachment of biotin to the organometallic fragment still allows biotin recognition by the protein. Therefore, the biotinylated compounds might be potent anticancer drugs as they show cytotoxic effect in breast cancer cells at low dose dependent on the compounds' uptake, induce cell death by apoptosis and inhibit the colony formation of cancer cells causing also less severe side effects in zebrafish.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Biotin/chemistry , Cyclopentanes/chemistry , Ruthenium Compounds/chemical synthesis , Animals , Antineoplastic Agents/toxicity , Biotin/pharmacology , Biotinylation , Breast Neoplasms/drug therapy , Cell Line, Tumor , Crystallography, X-Ray , Cyclopentanes/pharmacology , Humans , Molecular Structure , Ruthenium Compounds/chemistry , Ruthenium Compounds/pharmacology , Toxicity Tests , Zebrafish
7.
ChemMedChem ; 14(7): 770-778, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30694018

ABSTRACT

New cyclam derivatives (HOCH2 CH2 CH2 )2 (PhCH2 )2 Cyclam and (HOCH2 CH2 CH2 )2 ( 4-CF3 PhCH2 )2 Cyclam, as well as their CuII and FeIII complexes, were synthesized and characterized and their stability in cellular media was assessed. The cytotoxic effect of all compounds was examined on human cervical cancer (HeLa) cells, revealing strong anticancer activity. After 24 h, only complexes with the (HOCH2 CH2 CH2 )2 ( 4-CF3 PhCH2 )2 Cyclam ligand are cytotoxic, whereas after incubation for 72 h all compounds show significant antiproliferative effects. Notably, compounds containing 4-CF3 PhCH2 pendant arms on the cyclam ring revealed the most activity, with cytotoxicity values up to 12 times higher than those of cisplatin. All metal complexes seem to induce cell death through the formation of reactive oxygen species.


Subject(s)
Antineoplastic Agents/pharmacology , Copper/chemistry , Cyclams/pharmacology , Ferric Compounds/chemistry , Macromolecular Substances/chemical synthesis , Macromolecular Substances/pharmacology , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Proliferation/drug effects , Cyclams/chemistry , Drug Screening Assays, Antitumor , Female , HeLa Cells , Humans , Macromolecular Substances/chemistry , Reactive Oxygen Species/metabolism , Spectrum Analysis/methods , Structure-Activity Relationship , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...