Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 189(4): 134, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35247077

ABSTRACT

Molecularly imprinted polymers MIPs were successfully assembled around quantum dots (QDs), for the detection of the protein biomarker CA19-9 associated to pancreatic cancer (PC). These imprinted materials MIP@QDs were incorporated within the cellulose hydrogel with retention of its conformational structure inside the binding cavities. The concept is to use MIPs which function as the biorecognition elements, conjugated to cadmium telluride QDs as the sensing system. The excitation wavelength was set to 477 nm and the fluorescence signal was measured at its maximum intensity, with an emission range between 530 and 780 nm. The fluorescence quenching of the imprinted cellulose hydrogels occurred with increasing concentrations of CA19-9, showing linearity in the range 2.76 × 10 -2 - 5.23 × 10 2 U/ml, in a 1000-fold diluted human serum. Replicates of the imprinted hydrogel show a linear response below the cut-off values for pancreatic cancer diagnosis (< 23 U/ml), a limit of detection of 1.58 × 10 -3 U/ml and an imprinting factor (IF) of 1.76. In addition to the fact that the imprinted cellulose hydrogel displays good stability and selectivity towards CA19-9 when compared with the non-imprinted controls, the conjugation of MIPs to QDs increases the sensitivity of the system for an optical detection method towards ranges within clinical significance. This fact shows potential for the imprinted hydrogel to be applied as a sensitive, low-cost format for point-of-care tests (PoCTs).


Subject(s)
Molecular Imprinting , Neoplasms , Quantum Dots , Biomarkers, Tumor , CA-19-9 Antigen , Cellulose , Humans , Hydrogels , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Quantum Dots/chemistry
2.
ACS Appl Bio Mater ; 4(5): 4224-4235, 2021 05 17.
Article in English | MEDLINE | ID: mdl-35006835

ABSTRACT

In this work, the conjugation of molecularly imprinted polymers (MIPs) to quantum dots (QDs) was successfully applied in the assembly of an imprinted cellulose membrane [hydroxy ethyl cellulose (HEC)/MIP@QDs] for the specific recognition of the cardiac biomarker myoglobin (Myo) as a sensitive, user-friendly, and portable system with the potential for point-of-care (POC) applications. The concept is to use the MIPs as biorecognition elements, previously prepared on the surface of semiconductor cadmium telluride QDs as detection particles. The fluorescent quenching of the membrane occurred with increasing concentrations of Myo, showing linearity in the interval range of 7.39-291.3 pg/mL in a1000-fold diluted human serum. The best membrane showed a linear response below the cutoff values for myocardial infarction (23 ng/mL), a limit of detection of 3.08 pg/mL, and an imprinting factor of 1.65. The incorporation of the biorecognition element MIPs on the cellulose substrate brings an approach toward a portable and user-friendly device in a sustainable manner. Overall, the imprinted membranes display good stability and selectivity toward Myo when compared with the nonimprinted membranes (HEC/NIP@QDs) and have the potential to be applied as a sensitive system for Myo detection in the presence of other proteins. Moreover, the conjugation of MIPs to QDs increases the sensitivity of the system for an optical label-free detection method, reaching concentration levels with clinical significance.


Subject(s)
Biocompatible Materials/chemistry , Cellulose/chemistry , Fluorescent Dyes/chemistry , Molecularly Imprinted Polymers/chemistry , Myoglobin/analysis , Humans , Materials Testing , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...