Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 13(617)2020 02 04.
Article in English | MEDLINE | ID: mdl-32019898

ABSTRACT

The Parkin-coregulated gene (PACRG), which encodes a protein of unknown function, shares a bidirectional promoter with Parkin (PRKN), which encodes an E3 ubiquitin ligase. Because PRKN is important in mitochondrial quality control and protection against stress, we tested whether PACRG also affected these pathways in various cultured human cell lines and in mouse embryonic fibroblasts. PACRG did not play a role in mitophagy but did play a role in tumor necrosis factor (TNF) signaling. Similarly to Parkin, PACRG promoted nuclear factor κB (NF-κB) activation in response to TNF. TNF-induced nuclear translocation of the NF-κB subunit p65 and NF-κB-dependent transcription were decreased in PACRG-deficient cells. Defective canonical NF-κB activation in the absence of PACRG was accompanied by a decrease in linear ubiquitylation mediated by the linear ubiquitin chain assembly complex (LUBAC), which is composed of the two E3 ubiquitin ligases HOIP and HOIL-1L and the adaptor protein SHARPIN. Upon TNF stimulation, PACRG was recruited to the activated TNF receptor complex and interacted with LUBAC components. PACRG functionally replaced SHARPIN in this context. In SHARPIN-deficient cells, PACRG prevented LUBAC destabilization, restored HOIP-dependent linear ubiquitylation, and protected cells from TNF-induced apoptosis. This function of PACRG in positively regulating TNF signaling may help to explain the association of PACRG and PRKN polymorphisms with an increased susceptibility to intracellular pathogens.


Subject(s)
Microfilament Proteins/metabolism , Molecular Chaperones/metabolism , NF-kappa B/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , HEK293 Cells , HeLa Cells , Humans , Mice, Knockout , Microfilament Proteins/genetics , Mitophagy/genetics , Molecular Chaperones/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Ubiquitin-Protein Ligases/genetics
2.
Mol Cell ; 49(5): 908-21, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23453807

ABSTRACT

Parkin, a RING-between-RING-type E3 ubiquitin ligase associated with Parkinson's disease, has a wide neuroprotective activity, preventing cell death in various stress paradigms. We identified a stress-protective pathway regulated by parkin that links NF-κB signaling and mitochondrial integrity via linear ubiquitination. Under cellular stress, parkin is recruited to the linear ubiquitin assembly complex and increases linear ubiquitination of NF-κB essential modulator (NEMO), which is essential for canonical NF-κB signaling. As a result, the mitochondrial guanosine triphosphatase OPA1 is transcriptionally upregulated via NF-κB-responsive promoter elements for maintenance of mitochondrial integrity and protection from stress-induced cell death. Parkin-induced stress protection is lost in the absence of either NEMO or OPA1, but not in cells defective for the mitophagy pathway. Notably, in parkin-deficient cells linear ubiquitination of NEMO, activation of NF-κB, and upregulation of OPA1 are significantly reduced in response to TNF-α stimulation, supporting the physiological relevance of parkin in regulating this antiapoptotic pathway.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Mitochondria/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Animals , Apoptosis , Fibroblasts/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Neurons/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Signal Transduction , Transfection , Ubiquitin-Protein Ligases/metabolism
3.
Acta Neuropathol ; 123(2): 173-88, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22057787

ABSTRACT

Mitochondria are dynamic organelles which are essential for many cellular processes, such as ATP production by oxidative phosphorylation, lipid metabolism, assembly of iron sulfur clusters, regulation of calcium homeostasis, and cell death pathways. The dynamic changes in mitochondrial morphology, connectivity, and subcellular distribution are critically dependent on a highly regulated fusion and fission machinery. Mitochondrial function, dynamics, and quality control are vital for the maintenance of neuronal integrity. Indeed, there is mounting evidence that mitochondrial dysfunction plays a central role in several neurodegenerative diseases. In particular, the identification of genes linked to rare familial variants of Parkinson's disease has fueled research on mitochondrial aspects of the disease etiopathogenesis. Studies on the function of parkin and PINK1, which are associated with autosomal recessive parkinsonism, provided compelling evidence that these proteins can functionally interact to maintain mitochondrial integrity and to promote clearance of damaged and dysfunctional mitochondria. In this review we will summarize current knowledge about the impact of parkin and PINK1 on mitochondria.


Subject(s)
Mitochondrial Diseases/metabolism , Parkinson Disease/metabolism , Protein Kinases/physiology , Ubiquitin-Protein Ligases/physiology , Animals , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/physiopathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/physiology , Parkinson Disease/genetics , Parkinson Disease/physiopathology , Parkinsonian Disorders/genetics , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/physiopathology , Protein Kinases/genetics , Ubiquitin-Protein Ligases/genetics
4.
PLoS One ; 5(7): e11783, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20689587

ABSTRACT

BACKGROUND: Mutations in the gene encoding the E3 ubiquitin ligase parkin (PARK2) are responsible for the majority of autosomal recessive parkinsonism. Similarly to other knockout mouse models of PD-associated genes, parkin knockout mice do not show a substantial neuropathological or behavioral phenotype, while loss of parkin in Drosophila melanogaster leads to a severe phenotype, including reduced lifespan, apoptotic flight muscle degeneration and male sterility. In order to study the function of parkin in more detail and to address possible differences in its role in different species, we chose Danio rerio as a different vertebrate model system. METHODOLOGY/PRINCIPAL FINDINGS: We first cloned zebrafish parkin to compare its biochemical and functional aspects with that of human parkin. By using an antisense knockdown strategy we generated a zebrafish model of parkin deficiency (knockdown efficiency between 50% and 60%) and found that the transient knockdown of parkin does not cause morphological or behavioral alterations. Specifically, we did not observe a loss of dopaminergic neurons in parkin-deficient zebrafish. In addition, we established transgenic zebrafish lines stably expressing parkin by using a Gal4/UAS-based bidirectional expression system. While parkin-deficient zebrafish are more vulnerable to proteotoxicity, increased parkin expression protected transgenic zebrafish from cell death induced by proteotoxic stress. CONCLUSIONS/SIGNIFICANCE: Similarly to human parkin, zebrafish parkin is a stress-responsive protein which protects cells from stress-induced cell death. Our transgenic zebrafish model is a novel tool to characterize the protective capacity of parkin in vivo.


Subject(s)
Dopamine/metabolism , Neurons/metabolism , Ubiquitin-Protein Ligases/metabolism , Zebrafish/metabolism , Animals , Animals, Genetically Modified , Apoptosis/genetics , Apoptosis/physiology , Blotting, Western , Cell Line , Cell Line, Tumor , Female , Fluorescent Antibody Technique, Indirect , HeLa Cells , Humans , In Situ Hybridization , Male , Membrane Potential, Mitochondrial/genetics , Membrane Potential, Mitochondrial/physiology , Polymerase Chain Reaction , Ubiquitin-Protein Ligases/genetics , Zebrafish/genetics
5.
J Biol Chem ; 283(20): 13771-9, 2008 May 16.
Article in English | MEDLINE | ID: mdl-18362144

ABSTRACT

Loss-of-function mutations in the Parkin gene (PARK2) are responsible for the majority of autosomal recessive Parkinson disease. A growing body of evidence indicates that misfolding and aggregation of Parkin is a major mechanism of Parkin inactivation, accounting for the loss-of-function phenotype of various pathogenic Parkin mutants. Remarkably, wild-type Parkin is also prone to misfolding under certain cellular conditions, suggesting a more general role of Parkin in the pathogenesis of Parkinson disease. We now show that misfolding of Parkin can lead to two phenotypes: the formation of detergent-insoluble, aggregated Parkin, or destabilization of Parkin resulting in an accelerated proteasomal degradation. By combining two pathogenic Parkin mutations, we could demonstrate that destabilization of Parkin is dominant over the formation of detergent-insoluble Parkin aggregates. Furthermore, a comparative analysis with HHARI, an E3 ubiquitin ligase with an RBR domain highly homologous to that of Parkin, revealed that folding of Parkin is specifically dependent on the integrity of the C-terminal domain, but not on the presence of a putative PDZ-binding motif at the extreme C terminus.


Subject(s)
Mutation , Ubiquitin-Protein Ligases/chemistry , Amino Acid Motifs , Animals , Brain/metabolism , Cell Membrane/metabolism , Humans , Mice , Models, Biological , Phenotype , Protein Folding , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...