Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38432778

ABSTRACT

The dosimetry and control of exposure for individuals chronically exposed to ionizing radiation are important and complex issues. Assessment may be optimized by evaluating individual adaptation and radiosensitivity, but it is not possible for a single model to account for all relevant parameters. Our goal was to develop approaches for the calculation of doses for persons chronically exposed to ionizing radiation, taking their radiosensitivities into consideration. On the basis of ex vivo radiation of blood samples, dose-effect models were constructed for dose ranges 0.01-2.0 and 0.01-0.4 Gy, using different cytogenetic criteria. The frequencies of "dicentric chromosomes and rings" at low doses are too low to have predictive value. The different responses of subjects to radiation made it possible to categorize them according to their radiosensitivities and to generate separate dose-effect curves for radiosensitive, average, and radioresistant individuals, reducing the amount of error in retrospective dosimetry.


Subject(s)
Radiation Tolerance , Radiation, Ionizing , Humans , Retrospective Studies , Cytogenetics , Radiation Tolerance/genetics , Cytogenetic Analysis
2.
Article in English | MEDLINE | ID: mdl-35094813

ABSTRACT

Bio-monitoring of human radiation exposure is based, as a rule, on a single analysis of chromosomal aberrations. Factors such as radiosensitivity, adaptation, and the stability of cytogenetic indices are not taken into account. We studied frequency of chromosome aberrations (FCA) and G0 chromosome radiosensitivity following in vitro γ-exposure, over a 2.5-year period, for 129 residents of the Dolon settlement, part of the extreme radiation risk zone, Semipalatinsk nuclear test site region, Kazakhstan. Radiosensitivity was evaluated on the basis of FCA and dose assessment by physical dosimetry. FCA was 3-fold higher in Dolon inhabitants as in the control group (p ≤ 0.01). The average coefficient of variability of spontaneous FCA was 31 %. In 20 % of the subjects, it was very high (50-70 %). Individual dose estimation in a single study in such individuals may lead to significant errors. Individual G0-chromosomal radiosensitivity showed less variation (18.7 %). Chronic low-dose irradiation was an adaptive factor to the damaging dose (1 Gy). Three methods of individual radiosensitivity assessment were considered, based on: G0-chromosomal radiosensitivity under additional in vitro γ-radiation; FCA and average dose per year; FCA and total dose received during years of residence in a radiocontaminated settlement, according to physical dosimetry. There is a significant difference in response (FCA) between radiosensitive and radioresistant individuals. This should be taken into account in individual dosimetry and risk assessment of radiation exposure.


Subject(s)
Chromosome Aberrations , Gamma Rays , Radiation, Ionizing , Cytogenetic Analysis , Gamma Rays/adverse effects , Humans , Kazakhstan , Radiation Tolerance/genetics
3.
J Environ Sci Health B ; 56(5): 490-502, 2021.
Article in English | MEDLINE | ID: mdl-34019462

ABSTRACT

Obsolete organochlorine pesticides (OSPs) are currently prohibited as persistent organic pollutants that contaminate the environment. If undisposed, they continue to pollute soil and water, to accumulate in the food chain and to harm plants, animals and the human body. The aim of the study was to assess water and soil pollution around the storehouses of undisposed, banned OSPs and their possible genotoxic effect. The storehouses in four villages near Almaty, Kazakhstan were investigated. Chemical analysis confirmed contamination of water and soil around storehouses with OSPs. The genotoxic effect of water and soil samples was evaluated using model objects: S.typhymurium, D.melanogaster, sheep lymphocytes cultures and human lymphocytes cultures. It was found that water and soil samples caused mutagenic effect in all model systems. They increased the frequency of revertants in Salmonella, the frequency of lethal mutations in Drosophila chromosomes, and the frequency of chromosome aberrations in cultures of human and sheep lymphocytes. Although a genotoxic effect was demonstrated for each of these models, various models showed different sensitivity to the effects of pesticides and they varied degree of response. The association between the total content of OCPs in soil and the level of mutations for different model systems was discovered.


Subject(s)
Environmental Pollutants/analysis , Hydrocarbons, Chlorinated/analysis , Mutagens/analysis , Pesticides/analysis , Animals , Environmental Monitoring , Environmental Pollutants/toxicity , Humans , Hydrocarbons, Chlorinated/toxicity , Kazakhstan , Mutagens/toxicity , Pesticides/toxicity , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...