Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Insects ; 9(2)2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29921814

ABSTRACT

Duponchelia fovealis (Lepidoptera: Crambidae) is an invasive species that has had a large impact on strawberry crops in Brazil. Pesticides have had limited effectiveness and the use of biological control agents to improve its management is the most appropriate approach. The aim of this study was to evaluate the pathogenicity and virulence of entomopathogenic fungi—isolated from soil—against Duponchelia fovealis larvae under laboratory and greenhouse conditions. Pathogenicity screenings were performed for twenty isolates from Beauveria bassiana, Beauveria caledonica, Isaria javanica, Metarhizium anisopliae, and Lecanicillium sp. against third instar larvae of D. fovealis at the concentration of 108 conidia·mL−1. Lethal concentration (LC50) and lethal time (LT50) were determined for the most pathogenic isolates and for one commercial mycoinsecticide. Mortality rates varied from 10 to 89%. The isolates B. bassiana Bea1, Bea110, Bea111 and I. javanica Isa340 were the most pathogenic. The most virulent isolates were B. bassiana Bea111 and I. javanica Isa340 with LC50 values of 2.33 × 106 and 9.69 × 105 conidia·mL−1, respectively. Under greenhouse conditions, the efficacy of LC50 of the isolates I. javanica Isa340 and B. bassiana Bea111 were 45% and 52%, respectively. Our results indicate that these isolates are strong candidates for application in the control of D. fovealis. This study is the first evaluation of soil-borne entomopathogenic fungi against D. fovealis.

2.
Braz. j. microbiol ; 48(1): 32-36, Jan.-Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-839352

ABSTRACT

Abstract Actinobacteria occur in many environments and have the capacity to produce secondary metabolites with antibiotic potential. Identification and taxonomy of actinobacteria that produce antimicrobial substances is essential for the screening of new compounds, and sequencing of the 16S region of ribosomal DNA (rDNA), which is conserved and present in all bacteria, is an important method of identification. Melanized fungi are free-living organisms, which can also be pathogens of clinical importance. This work aimed to evaluate growth inhibition of melanized fungi by actinobacteria and to identify the latter to the species level. In this study, antimicrobial activity of 13 actinobacterial isolates from the genus Streptomyces was evaluated against seven melanized fungi of the genera Exophiala, Cladosporium, and Rhinocladiella. In all tests, all actinobacterial isolates showed inhibitory activity against all isolates of melanized fungi, and only one actinobacterial isolate had less efficient inhibitory activity. The 16S rDNA region of five previously unidentified actinobacterial isolates from Ilha do Mel, Paraná, Brazil, was sequenced; four of the isolates were identified as Streptomyces globisporus subsp. globisporus, and one isolate was identified as Streptomyces aureus. This work highlights the potential of actinobacteria with antifungal activity and their role in the pursuit of novel antimicrobial substances.


Subject(s)
Actinobacteria/physiology , Fungi/physiology , Antibiosis , Phylogeny , Streptomyces/classification , Streptomyces/genetics , Brazil , RNA, Ribosomal, 16S/genetics , Actinobacteria/isolation & purification , Actinobacteria/classification , Actinobacteria/genetics
3.
Braz J Microbiol ; 48(1): 32-36, 2017.
Article in English | MEDLINE | ID: mdl-27777013

ABSTRACT

Actinobacteria occur in many environments and have the capacity to produce secondary metabolites with antibiotic potential. Identification and taxonomy of actinobacteria that produce antimicrobial substances is essential for the screening of new compounds, and sequencing of the 16S region of ribosomal DNA (rDNA), which is conserved and present in all bacteria, is an important method of identification. Melanized fungi are free-living organisms, which can also be pathogens of clinical importance. This work aimed to evaluate growth inhibition of melanized fungi by actinobacteria and to identify the latter to the species level. In this study, antimicrobial activity of 13 actinobacterial isolates from the genus Streptomyces was evaluated against seven melanized fungi of the genera Exophiala, Cladosporium, and Rhinocladiella. In all tests, all actinobacterial isolates showed inhibitory activity against all isolates of melanized fungi, and only one actinobacterial isolate had less efficient inhibitory activity. The 16S rDNA region of five previously unidentified actinobacterial isolates from Ilha do Mel, Paraná, Brazil, was sequenced; four of the isolates were identified as Streptomyces globisporus subsp. globisporus, and one isolate was identified as Streptomyces aureus. This work highlights the potential of actinobacteria with antifungal activity and their role in the pursuit of novel antimicrobial substances.


Subject(s)
Actinobacteria/physiology , Antibiosis , Fungi/physiology , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Brazil , Phylogeny , RNA, Ribosomal, 16S/genetics , Streptomyces/classification , Streptomyces/genetics
4.
Eur J Med Chem ; 68: 121-31, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23973824

ABSTRACT

Several novel 2,4-dinitrophenylhydrazone betulinic acid derivatives have been prepared by chemical and biotransformation methods using fungi and carrot cells. Some compounds showed significant cytotoxicity and selectivity against some tumor cell lines. The most active, 3-[(2,4-dinitrophenyl)hydrazono]lup-(20R)-29-oxolupan-28-oic acid, showed IC50 values between 1.76 and 2.51 µM against five human cancer cell lines. The most selective, 3-hydroxy-20-[(2,4-dinitrophenyl)hydrazono]-29-norlupan-28-oic acid, was five to seven times more selective for cancer cells when compared to fibroblasts. Cell cycle analysis and apoptosis induction were studied for the most active derivatives.


Subject(s)
Hydrazones/chemistry , Hydrazones/pharmacology , Triterpenes/chemistry , Triterpenes/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Flow Cytometry , Humans , Inhibitory Concentration 50 , Molecular Structure , Pentacyclic Triterpenes , Triterpenes/isolation & purification , Betulinic Acid
5.
J Agric Food Chem ; 60(42): 10420-5, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23003336

ABSTRACT

The development of chemical sensor technology in recent years has stimulated an interest regarding the use of characteristic volatiles and odors as a rapid and early indication of deterioration in fruit quality. The fungal infestation by Drechslera sp. in melons is a severe problem, and we demonstrate that electronic sensors based on carbon nanostructures are able to detect the presence of these fungi in melon. The responses of sensor conductance G and capacitance C at 27 kHz were measured and used to calculate their ΔG and ΔC variation over the full melon ripening process under shelf conditions with proliferation of Drechslera sp. fungi. The sensor response showed that these fungi can be electronically identified in charentais melon, constituting an effective and cheap test procedure to differentiate between infected and uninfected melon.


Subject(s)
Ascomycota/isolation & purification , Carbon/chemistry , Cucurbitaceae/microbiology , Electronics , Nanostructures
6.
Can J Microbiol ; 53(10): 1123-32, 2007 Oct.
Article in English | MEDLINE | ID: mdl-18026204

ABSTRACT

Thirteen endophytic fungal strains of the genus Pestalotiopsis were isolated from the medicinal plant Maytenus ilicifolia Mart. ex. Reiss (commonly known as "espinheira santa") and their antimicrobial properties were investigated. Two isolates were successful in inhibiting the growth of the tested microorganisms (Escherichia coli, Klebsiella pneumoniae, Micrococcus luteus, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA)) using the technique of bioautographic thin-layer chromatography (TLC) agar overlay assay. An analysis based on a polyphasic approach integrating taxonomic information, morphological traits, RAPD markers, and the sequencing of the ITS1-5.8S-ITS2 of the rDNA led to the assignment of the isolates as belonging to the species Pestalotiopsis microspora, Pestalotiopsis vismiae, and Pestalotiopsis leucothoes. Therefore, the present study presents a new approach to the study of endophytic fungi of the genus Pestalotiopsis.


Subject(s)
Antibiosis , Maytenus/microbiology , Plants, Medicinal/microbiology , Xylariales/classification , Xylariales/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacteria/growth & development , Bayes Theorem , Brazil , Chromatography, Thin Layer , DNA, Fungal/analysis , DNA, Ribosomal Spacer/analysis , Microbial Sensitivity Tests/methods , Molecular Sequence Data , Mycological Typing Techniques , Phylogeny , Random Amplified Polymorphic DNA Technique , Sequence Analysis, DNA , Xylariales/growth & development
7.
Phytochemistry ; 68(6): 834-9, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17258248

ABSTRACT

Betulinic acid (1), a triterpenoid found in many plant species, has attracted attention due to its important pharmacological properties, such as anti-cancer and anti-HIV activities. The closely related, betulonic acid (2) also has similar properties. In order to obtain derivatives potentially useful for detailed pharmacological studies, both compounds were submitted to incubations with selected microorganisms. In this work, both were individually metabolized by the fungi Arthrobotrys, Chaetophoma and Dematium, isolated from the bark of Platanus orientalis as well as with Colletotrichum, obtained from corn leaves; such fungal transformations are quite rare in the scientific literature. Biotransformations with Arthrobotrys converted betulonic acid (2) into 3-oxo-7beta-hydroxylup-20(29)-en-28-oic acid (3), 3-oxo-7beta,15alpha-dihydroxylup-20(29)-en-28-oic acid (4) and 3-oxo-7beta,30-dihydroxylup-20(29)-en-28-oic acid (5); Colletotrichum converted betulinic acid (1) into 3-oxo-15alpha-hydroxylup-20(29)-en-28-oic (6) acid whereas betulonic acid (2) was converted into the same product and 3-oxo-7beta,15alpha-dihydroxylup-20(29)-en-28-oic acid (4); Chaetophoma converted betulonic acid (2) into 3-oxo-25-hydroxylup-20(29)-en-28-oic acid (7) and both Chaetophoma and Dematium converted betulinic acid (1) into betulonic acid (2). Those fungi, therefore, are useful for mild, selective oxidations of lupane substrates at positions C-3, C-7, C-15, C-25 and C-30.


Subject(s)
Fungi/metabolism , Oleanolic Acid/analogs & derivatives , Triterpenes/metabolism , Ascomycota/metabolism , Biotransformation , Colletotrichum/metabolism , Molecular Structure , Oleanolic Acid/chemistry , Oleanolic Acid/metabolism , Pentacyclic Triterpenes , Triterpenes/chemistry , Betulinic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...