Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiol ; 22(4): 1238-1250, 2020 04.
Article in English | MEDLINE | ID: mdl-31997531

ABSTRACT

Understanding how ecological traits have changed over evolutionary time is a fundamental question in biology. Specifically, the extent to which more closely related organisms share similar ecological preferences due to phylogenetic conservation - or if they are forced apart by competition - is still debated. Here, we explored the co-occurrence patterns of freshwater cyanobacteria at the sub-genus level to investigate whether more closely related taxa share more similar niches and to what extent these niches were defined by abiotic or biotic variables. We used deep 16S rRNA gene amplicon sequencing and measured several abiotic environmental parameters (nutrients, temperature, etc.) in water samples collected over time and space in Furnas Reservoir, Brazil. We found that relatively more closely related Synechococcus (in the continuous range of 93%-100% nucleotide identity in 16S) had an increased tendency to co-occur with one another (i.e. had similar realized niches). This tendency could not be easily explained by shared preferences for measured abiotic niche dimensions. Thus, commonly measured abiotic parameters might not be sufficient to characterize, nor to predict community assembly or dynamics. Rather, co-occurrence between Synechococcus and the surrounding community (whether or not they represent true biological interactions) may be a more sensitive measure of realized niches. Overall, our results suggest that realized niches are phylogenetically conserved, at least at the sub-genus level and at the resolution of the 16S marker. Determining how these results generalize to other genera and at finer genetic resolution merits further investigation.


Subject(s)
Biological Evolution , Synechococcus/physiology , Brazil , Ecosystem , Fresh Water/microbiology , Phylogeny , RNA, Ribosomal, 16S , Synechococcus/classification , Synechococcus/genetics
2.
Front Genet ; 9: 73, 2018.
Article in English | MEDLINE | ID: mdl-29593777

ABSTRACT

Genetic diversity and population studies are essential for conservation and wildlife management programs. However, monitoring requires the analysis of multiple loci from many samples. These processes can be laborious and expensive. The choice of microsatellites and PCR calibration for genotyping are particularly daunting. Here we optimized a low-cost genotyping method using multiple microsatellite loci for simultaneous genotyping of up to 384 samples using next-generation sequencing (NGS). We designed primers with adapters to the combinatorial barcoding amplicon library and sequenced samples by MiSeq. Next, we adapted a bioinformatics pipeline for genotyping microsatellites based on read-length and sequence content. Using primer pairs for eight microsatellite loci from the fish Prochilodus costatus, we amplified, sequenced, and analyzed the DNA of 96, 288, or 384 individuals for allele detection. The most cost-effective methodology was a pseudo-multiplex reaction using a low-throughput kit of 1 M reads (Nano) for 384 DNA samples. We observed an average of 325 reads per individual per locus when genotyping eight loci. Assuming a minimum requirement of 10 reads per loci, two to four times more loci could be tested in each run, depending on the quality of the PCR reaction of each locus. In conclusion, we present a novel method for microsatellite genotyping using Illumina combinatorial barcoding that dispenses exhaustive PCR calibrations, since non-specific amplicons can be eliminated by bioinformatics analyses. This methodology rapidly provides genotyping data and is therefore a promising development for large-scale conservation-genetics studies.

3.
Appl Environ Microbiol ; 80(18): 5836-43, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25038094

ABSTRACT

Microcystin is a common and well-known cyanobacterial toxin whose intracellular role is still under investigation. Increasing knowledge on microcystin gene expression and regulation can contribute to the understanding of its putative cellular function. In this work, reverse transcription-quantitative PCR (RT-qPCR) was used to investigate the transcriptional response of the mcyD gene to nitrogen (nitrate and ammonium) and phosphorus limitation in two toxic Microcystis strains. The existence of a direct correlation between transcripts of mcyD and ntcA genes was also identified. In previous studies, NtcA (global nitrogen regulator) has been described as a potential component in the control of microcystin biosynthesis. This research showed that stress agents linked to nutrient deprivation could lead to a significant increase of microcystin production in both strains studied. The more toxic strain proved to be more resistant to nutrient limitation. The similar outcomes of mcyD regulation observed for all nutrients suggest that this response can be linked to oxidative stress of cells undergoing adverse growth conditions.


Subject(s)
Microcystins/metabolism , Microcystis/physiology , Stress, Physiological , Culture Media/chemistry , Gene Expression Profiling , Genes, Bacterial , Microcystis/metabolism , Nitrogen/metabolism , Oxidative Stress , Phosphorus/metabolism , Real-Time Polymerase Chain Reaction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...