Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 18(8): e2104899, 2022 02.
Article in English | MEDLINE | ID: mdl-34897997

ABSTRACT

Encapsulation and transplantation of insulin-producing cells offer a promising curative treatment for type 1 diabetes (T1D) without immunosuppression. However, biomaterials used to encapsulate cells often elicit foreign body responses, leading to cellular overgrowth and deposition of fibrotic tissue, which in turn diminishes mass transfer to and from transplanted cells. Meanwhile, the encapsulation device must be safe, scalable, and ideally retrievable to meet clinical requirements. Here, a durable and safe nanofibrous device coated with a thin and uniform, fibrosis-mitigating, zwitterionically modified alginate hydrogel for encapsulation of islets and stem cell-derived beta (SC-ß) cells is reported. The device with a configuration that has cells encapsulated within the cylindrical wall, allowing scale-up in both radial and longitudinal directions without sacrificing mass transfer, is designed. Due to its facile mass transfer and low level of fibrotic reactions, the device supports long-term cell engraftment, correcting diabetes in C57BL6/J mice with rat islets for up to 399 days and SCID-beige mice with human SC-ß cells for up to 238 days. The scalability and retrievability in dogs are further demonstrated. These results suggest the potential of this new device for cell therapies to treat T1D and other diseases.


Subject(s)
Diabetes Mellitus, Experimental , Insulins , Islets of Langerhans Transplantation , Animals , Diabetes Mellitus, Experimental/therapy , Dogs , Fibrosis , Islets of Langerhans Transplantation/methods , Mice , Mice, SCID , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...