Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(4): 2805-2815, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38241026

ABSTRACT

Cocrystallizing a given molecule with another can be useful for adjusting the physical properties of molecules in the solid state. However, most combinations of molecules do not readily cocrystallize but form either one-component crystals or amorphous solids. Computational methods of crystal structure prediction can, in principle, identify the thermodynamically stable cocrystal and thus predict if molecules will cocrystallize or not. However, the pronounced polymorphism and tendency of many organic molecules to form disordered solids suggest that kinetic factors can play an important role in cocrystallization. The question remains: if a binary system of molecules has a thermodynamically stable cocrystal, will it indeed cocrystallize? To address this question, we simulate the crystallization of more than 2600 distinct pairs of chiral model molecules of similar size in 2D and calculate accurate crystal energy landscapes for all of them. Our analysis shows that thermodynamic criteria alone are unreliable in the prediction of cocrystallization. While the vast majority of cocrystals that form in our simulations are thermodynamically favorable, most coformer systems that have a thermodynamically stable cocrystal do not cocrystallize. We furthermore show that cocrystallization rates increase 3-fold when coformers are used that do not form well-ordered single-component crystals. Our results suggest that kinetic factors of cocrystallization are decisive in many cases.

2.
ACS Omega ; 4(22): 19548-19555, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31788584

ABSTRACT

Transition-metal-doped carbon catalysts are promising Pt-free alternatives for low-temperature fuel cells. They are frequently obtained from sacrificial N-rich zeolitic imidazolate frameworks (ZIFs) doped with Co and Fe. The optimal low loading of metals has to be achieved to guarantee the competitive efficiency and facilitate an inquiry into the mechanism of their catalytic activity. We report on microwave-assisted solvothermal synthesis of Zn,Co-ZIFs with a relatively low (1-15 mol %) Co loading, which were further enriched with Fe(II). Materials were pyrolyzed at 700 °C to form catalytically active carbons bearing metal nanoparticles confined in structured carbon. The electrochemistry test of carbons for the oxygen reduction reaction (ORR) in perchloric acid demonstrated their high efficiency even at low cobalt contents. The initial loading of 10 mol % was found efficient, leading to the production of catalytically active carbons allowing for four-electron path of ORR.

SELECTION OF CITATIONS
SEARCH DETAIL
...