Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 134: 419-428, 2019 04.
Article in English | MEDLINE | ID: mdl-30703483

ABSTRACT

Oxidative stress and reactivation of long interspersed element-1 (LINE-1) are coincidently observed in bladder cancer (BlCa), but the mechanistic connection between these two oncogenic phenomena is unknown. Previously, we reported increases in oxidative stress and LINE-1 protein (ORF1p) expression in human BlCa tissues. In this study, we measured 5-methylcytosine (5mC), 8-hydroxydeoxyguanosine (8-OHdG), 8-oxoguanosine DNA glycosylase-1 (OGG1), H3K9me3 and HP1α in bladder tissues obtained from BlCa patients. Reactivation of LINE-1 by reactive oxygen species (ROS) through chromatin remodeling was investigated in seven BlCa cell lines. We found that 5mC was decreased, but 8-OHdG, H3K9me3 and HP1α levels were increased in BlCa tissues relative to the adjacent non-cancerous tissues. OGG1, H3K9me3 and HP1α expression in BlCa tissues were positively correlated with 8-OHdG levels. Following H2O2 treatment, LINE-1 transcript expression was increased in VM-CUB-1 and TCCSUP, whereas AluYa5 and AluYb8 transcripts were increased in BFTC905 cells. Basal expression of LINE-1 ORF1p varied among BlCa cell lines from none to very high. H2O2 treatment clearly increased expression of ORF1p in VM-CUB-1, TCCSUP and BFTC905. Chromatin immunoprecipitation experiments revealed that 5'-LINE-1 promoters became further enriched in H3K4me3 and H3K18ac in VM-CUB-1 and BFTC905 cells treated with H2O2. In contrast, 5'-LINE-1 promoters became more enriched in H3K9me3 and H3K27me3 in UM-UC-3 treated with H2O2. In summary, decreased 5mC, but increased 8-OHdG, H3K9me3 and HP1α expression were demonstrated in human BlCa tissues, indicating global DNA hypomethylation, increased oxidative stress and altered histone methylation in BlCa. Chromatin structures were profoundly changed in BlCa cells exposed to ROS, but expression of LINE-1 transcript and protein were at most modestly increased. ROS enhanced expression of full-length LINE-1 elements only in cell lines with pre-existing activation, which was paralleled by increased formation of active chromatin at LINE-1 promoter loci.


Subject(s)
Chromatin/metabolism , DNA Methylation , Epigenesis, Genetic , Long Interspersed Nucleotide Elements/genetics , Oxidative Stress , Reactive Oxygen Species/metabolism , Urinary Bladder Neoplasms/pathology , 8-Hydroxy-2'-Deoxyguanosine/analogs & derivatives , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Aged , Case-Control Studies , Chromatin/genetics , Chromobox Protein Homolog 5 , DNA Glycosylases/metabolism , Female , Humans , Male , Promoter Regions, Genetic , Tumor Cells, Cultured , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism
2.
Cancer Genomics Proteomics ; 15(2): 143-151, 2018.
Article in English | MEDLINE | ID: mdl-29496693

ABSTRACT

BACKGROUND/AIM: Reactivation of long interspersed nuclear element-1 (LINE-1) and oxidative stress are suggested to have oncogenic potential to drive tumorigenesis and cancer progression. We previously demonstrated that reactive oxygen species (ROS) caused hypomethylation of LINE-1 elements in bladder cancer cells. In this study, we investigated the expression of LINE-1-encoded protein (ORF1p) and oxidative stress marker 4-hydroxynonenal (4-HNE) in human bladder cancer tissues, as well as induction of ORF1p expression by ROS in bladder cancer cell lines. MATERIALS AND METHODS: Thirty-six cancerous and 15 non-cancerous adjacent tissues were immunohistochemically stained for ORF1p and 4-HNE. ORF1p expression and cell migration were determined in bladder cancer cells exposed to H2O2 Results: ORF1p and 4-HNE expression was higher in cancerous than non-cancerous tissues. Elevated ORF1p expression was associated with increased 4-HNE expression and with advanced tumors. H2O2 provoked oxidative stress and up-regulated ORF1p expression in VM-CUB-1 compared to the untreated control, and to a lesser degree in TCCSUP. H2O2 exposure enhanced cell migration in UM-UC-3, TCCSUP and VM-CUB-1. CONCLUSION: Elevated ORF1p expression is associated with tumor progression. ROS experimentally induce ORF1p expression and promote migration in bladder cancer cells.


Subject(s)
Long Interspersed Nucleotide Elements , Proteins/metabolism , Reactive Oxygen Species/metabolism , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Aged , Cell Movement/physiology , Disease Progression , Female , Humans , Male , Proteins/genetics , Up-Regulation , Urinary Bladder Neoplasms/genetics
3.
Urolithiasis ; 42(5): 387-94, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25022262

ABSTRACT

Urinary excretion of 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative DNA damage, is significantly higher in nephrolithiasis patients than in healthy individuals, indicating that these patients have higher degree of oxidative stress. In the present study, we investigated 8-OHdG expression in renal biopsies of patients with nephrolithiasis and in renal tubular cells (HK-2 cells) exposed to calcium oxalate monohydrate (COM). We performed immunohistochemical staining for 8-OHdG in renal biopsies adjacent stones obtained from 28 patients with nephrolithiasis. Controls were noncancerous renal tissues from nephrectomies of patients with renal cancer. 8-OHdG was overexpressed in the nucleus of renal tubular cells in patients with nephrolithiasis compared with controls. Only one nephrolithiasis biopsy was negative for 8-OHdG, whereas in 19 cases 8-OHdG was highly expressed. The level of expression of 8-OHdG among patients with calcium oxalate (mostly mixed with calcium phosphate) and uric acid stones was not significantly different. Increased leukocyte infiltration was observed in renal tissues from patients with nephrolithiasis. Exposure of HK-2 cells to COM caused increased intracellular reactive oxygen species and nuclear expression of 8-OHdG. To our knowledge, this is the first report of increased 8-OHdG expression in renal tubular cells of patients with nephrolithiasis. In vitro, COM crystals were capable of inducing oxidative damage of DNA in the proximal renal tubular cells.


Subject(s)
DNA Damage , Kidney/pathology , Nephrolithiasis/genetics , Oxidative Stress , Adult , Aged , Biopsy , Female , Humans , Kidney Calculi/genetics , Kidney Calculi/pathology , Male , Middle Aged , Nephrolithiasis/pathology , Young Adult
4.
Clin Chim Acta ; 429: 81-9, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24333391

ABSTRACT

To uncover whether urinary proteins are incorporated into stones, the proteomic profiles of kidney stones and urine collected from the same patients have to be explored. We employed 1D-PAGE and nanoHPLC-ESI-MS/MS to analyze the proteomes of kidney stone matrix (n=16), nephrolithiatic urine (n=14) and healthy urine (n=3). We identified 62, 66 and 22 proteins in stone matrix, nephrolithiatic urine and healthy urine, respectively. Inflammation- and fibrosis-associated proteins were frequently detected in the stone matrix and nephrolithiatic urine. Eighteen proteins were exclusively found in the stone matrix and nephrolithiatic urine, considered as candidate biomarkers for kidney stone formation. S100A8 and fibronectin, representatives of inflammation and fibrosis, respectively, were up-regulated in nephrolithiasis renal tissues. S100A8 was strongly expressed in infiltrated leukocytes. Fibronectin was over-expressed in renal tubular cells. S100A8 and fibronectin were immunologically confirmed to exist in nephrolithiatic urine and stone matrix, but in healthy urine they were undetectable. Conclusion, both kidney stones and urine obtained from the same patients greatly contained inflammatory and fibrotic proteins. S100A8 and fibronectin were up-regulated in stone-baring kidneys and nephrolithiatic urine. Therefore, inflammation and fibrosis are suggested to be involved in the formation of kidney calculi.


Subject(s)
Kidney Calculi/metabolism , Kidney Calculi/urine , Proteomics , Adult , Aged , Biomarkers/metabolism , Biomarkers/urine , Female , Fibrosis , Gene Expression Regulation , Humans , Inflammation/metabolism , Kidney/metabolism , Kidney/pathology , Kidney Calculi/pathology , Male , Middle Aged
5.
Nephrol Dial Transplant ; 27(11): 4125-30, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22461670

ABSTRACT

BACKGROUND: Urinary tract infections are generally known to be associated with nephrolithiasis, particularly struvite stone, in which the most common microbe found is urea-splitting bacterium, i.e. Proteus mirabilis. However, our observation indicated that it might not be the case of stone formers in Thailand. We therefore extensively characterized microorganisms associated with all types of kidney stones. METHODS: A total of 100 kidney stone formers (59 males and 41 females) admitted for elective percutaneous nephrolithotomy were recruited and microorganisms isolated from catheterized urine and cortex and nidus of their stones were analyzed. RESULTS: From 100 stone formers recruited, 36 cases had a total of 45 bacterial isolates cultivated from their catheterized urine and/or stone matrices. Among these 36 cases, chemical analysis by Fourier-transformed infrared spectroscopy revealed that 8 had the previously classified 'infection-induced stones', whereas the other 28 cases had the previously classified 'metabolic stones'. Calcium oxalate (in either pure or mixed form) was the most common and found in 64 and 75% of the stone formers with and without bacterial isolates, respectively. Escherichia coli was the most common bacterium (approximately one-third of all bacterial isolates) found in urine and stone matrices (both nidus and periphery). Linear regression analysis showed significant correlation (r = 0.860, P < 0.001) between bacterial types in urine and stone matrices. Multidrug resistance was frequently found in these isolated bacteria. Moreover, urea test revealed that only 31% were urea-splitting bacteria, whereas the majority (69%) had negative urea test. CONCLUSIONS: Our data indicate that microorganisms are associated with almost all chemical types of kidney stones and urea-splitting bacteria are not the major causative microorganisms found in urine and stone matrices of the stone formers in Thailand. These data may lead to rethinking and a new roadmap for future research regarding the role of microorganisms in kidney stone formation.


Subject(s)
Bacteria/classification , Nephrolithiasis/microbiology , Urinary Calculi/microbiology , Urinary Tract Infections/microbiology , Adult , Bacteria/isolation & purification , Female , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Nephrolithiasis/urine , Prevalence , Thailand , Urinary Calculi/urine , Urinary Tract Infections/epidemiology , Urinary Tract Infections/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...