Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Zhejiang Univ Sci B ; 22(2): 112-122, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33615752

ABSTRACT

This study aims to elucidate the antiproliferative mechanism of hydroxychavicol (HC). Its effects on cell cycle, apoptosis, and the expression of c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (MAPK) in HT-29 colon cancer cells were investigated. HC was isolated from Piper betle leaf (PBL) and verified by high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and gas chromatography-mass spectrometry (GC-MS). The cytotoxic effects of the standard drug 5-fluorouracil (5-FU), PBL water extract, and HC on HT-29 cells were measured after 24, 48, and 72 h of treatment. Cell cycle and apoptosis modulation by 5-FU and HC treatments were investigated up to 30 h. Changes in phosphorylated JNK (pJNK) and P38 (pP38) MAPK expression were observed up to 18 h. The half maximal inhibitory concentration (IC50) values of HC (30 µg/mL) and PBL water extract (380 µg/mL) were achieved at 24 h, whereas the IC50 of 5-FU (50 µmol/L) was obtained at 72 h. Cell cycle arrest at the G0/G1 phase in HC-treated cells was observed from 12 h onwards. Higher apoptotic cell death in HC-treated cells compared to 5-FU-treated cells (P<0.05) was observed. High expression of pJNK and pP38 MAPK was observed at 12 h in HC-treated cells, but not in 5-FU-treated HT-29 cells (P<0.05). It is concluded that HC induces cell cycle arrest and apoptosis of HT-29 cells, with these actions possibly mediated by JNK and P38 MAPK.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Eugenol/analogs & derivatives , Piper betle/chemistry , Eugenol/pharmacology , HT29 Cells , Humans , MAP Kinase Signaling System , Plant Extracts/pharmacology , Plant Leaves/chemistry , Polyphenols/pharmacology , Tumor Suppressor Protein p53
2.
J Zhejiang Univ Sci B ; 21(9): 745-748, 2020.
Article in English | MEDLINE | ID: mdl-32893531

ABSTRACT

Piper betle (PB), also known as "betel" in Malay language, is a tropical Asian vine. PB leaves are commonly chewed by Asians along with betel quid. It contains phenols such as eugenol and hydroxychavicol along with chlorophyll, ß-carotene, and vitamin C (Salehi et al., 2019). Extracts from PB leaves have various medicinal properties including anticancer, antioxidant, anti-inflammatory, and antibacterial effects (Salehi et al., 2019). Previous research has shown that PB induces cell cycle arrest at late S or G2/M phase and causes apoptosis at higher doses (Wu et al., 2014; Guha Majumdar and Subramanian, 2019). A combination of PB leaf extract has also been shown to enhance the cytotoxicity of the anticancer drug, 5-fluorouracil (5-FU), in cancer cells (Ng et al., 2014).


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Microtubules/drug effects , Piper betle , Plant Extracts/pharmacology , Cell Movement/drug effects , HT29 Cells , Humans , Plant Leaves
3.
J Zhejiang Univ Sci B ; 15(8): 692-700, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25091987

ABSTRACT

OBJECTIVE: The combination effect of Piper betle (PB) and 5-fluorouracil (5-FU) in enhancing the cytotoxic potential of 5-FU in inhibiting the growth of colon cancer cells was investigated. METHODS: HT29 and HCT116 cells were subjected to 5-FU or PB treatment. 5-FU and PB were then combined and their effects on both cell lines were observed after 24 h of treatment. PB-5-FU interaction was elucidated by isobologram analysis. Apoptosis features of the treated cells were revealed by annexin V/PI stain. High-performance liquid chromatography (HPLC) was performed to exclude any possible chemical interaction between the compounds. RESULTS: In the presence of PB extract, the cytotoxicity of 5-FU was observed at a lower dose (IC50 12.5 µmol/L) and a shorter time (24 h) in both cell lines. Both cell lines treated with 5-FU or PB alone induced a greater apoptosis effect compared with the combination treatment. Isobologram analysis indicated that PB and 5-FU interacted synergistically and antagonistically in inhibiting the growth of HT29 and HCT116 cells, respectively. CONCLUSIONS: In the presence of PB, a lower dosage of 5-FU is required to achieve the maximum drug effect in inhibiting the growth of HT29 cells. However, PB did not significantly reduce 5-FU dosage in HCT116 cells. Our result showed that this interaction may not solely contribute to the apoptosis pathway.


Subject(s)
Colonic Neoplasms/drug therapy , Fluorouracil/administration & dosage , Herb-Drug Interactions , Phytotherapy , Piper betle , Apoptosis/drug effects , Cell Proliferation/drug effects , Colonic Neoplasms/pathology , Dose-Response Relationship, Drug , HCT116 Cells , HT29 Cells , Humans , Malaysia , Plant Extracts/administration & dosage , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...