Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 2199, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396518

ABSTRACT

The phase evolution of as-prepared NaYF4:Yb,Er upconversion nanoparticles (UCNPs) with a metastable cubic structure is studied based on in situ heating experiments via transmission electron microscopy (TEM). The atomistic behavior on the single NaYF4:Yb,Er UCNP is observed during the phase transition. The formation and evolution of voids on the NaYF4:Yb,Er UCNP appear at a temperature below 420 °C. Small circular voids are transformed at the initial stage to a large, hexagonal-pillar shaped single void. Two different routes to reach the stable α-phase from the metastable cubic structure are identified on a single NaYF4:Yb,Er UCNP. The first is via a stable ß-phase and the second is a direct change via a liquid-like phase. The specific orientation relationships, [110]cubic//[11[Formula: see text]0]hexagonal and {002}cubic//{2[Formula: see text]00}hexagonal, between the cubic and hexagonal structures are confirmed. Additionally, a few extra-half planes terminated in the cubic structures are also observed at the cubic/hexagonal interface.

2.
Nano Lett ; 16(11): 6738-6745, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27704850

ABSTRACT

The electromechanical properties of ternary InAsP nanowires (NWs) were investigated by applying a uniaxial tensile strain in a transmission electron microscope (TEM). The electromechanical properties in our examined InAsP NWs were governed by the piezoresistive effect. We found that the electronic transport of the InAsP NWs is dominated by space-charge-limited transport, with a I ∞ V2 relation. Upon increasing the tensile strain, the electrical current in the NWs increases linearly, and the piezoresistance gradually decreases nonlinearly. By analyzing the space-charge-limited I-V curves, we show that the electromechanical response is due to a mobility that increases with strain. Finally, we use dynamical measurements to establish an upper limit on the time scale for the electromechanical response.

SELECTION OF CITATIONS
SEARCH DETAIL
...