Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Ecol ; 86(2): 1082-1095, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36197502

ABSTRACT

Poultry waste has been used as fertilizer to avoid soil degradation caused by the long-term application of chemical fertilizer. However, few studies have evaluated field conditions where livestock wastes have been used for extended periods of time. In this study, physicochemical parameters, metabarcoding of the 16S rRNA gene, and ecotoxicity indexes were used for the characterization of chicken manure and poultry litter to examine the effect of their application to agricultural soils for 10 years. Poultry wastes showed high concentrations of nutrients and increased electrical conductivity leading to phytotoxic effects on seeds. The bacterial communities were dominated by typical members of the gastrointestinal tract, noting the presence of pathogenic bacteria. Soils subjected to poultry manure applications showed statistically higher values of total and extractable phosphorous, increasing the risk of eutrophication. Moreover, while the soil bacterial community remained dominated by the ones related to the biogeochemical cycles of nutrients and plant growth promotion, losses of alpha diversity were observed on treated soils. Altogether, our work would contribute to understand the effects of common local agricultural practices and support the adoption of the waste treatment process in compliance with environmental sustainability guidelines.


Subject(s)
Poultry , Soil , Animals , Soil/chemistry , Manure , Fertilizers , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Genetic Variation
2.
Waste Manag ; 139: 124-135, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34968898

ABSTRACT

The egg industry has increased its production worldwide during the last decades. Several waste management strategies have been proposed to treat large volumes of poultry manure. Composting and anaerobic digestion are the main stabilization processes used. However, there are disagreements on the criteria for applying raw and treated poultry manure to the soil. We studied the relationship between physicochemical, toxicological, microbiological, parasitological, and metabarcoding parameters of raw and treated poultry manure (compost and digestate). Subsequently, we evaluated the mineralization of C, N and P, and the effects of amended soil on horticultural and ornamental crops. Compost and digestate presented better general conditions than poultry manure for use as organic soil amendments. The highest pathogenic microorganism content (total and fecal coliforms, Escherichia coli, and Salmonella spp.) was recorded for poultry manure. Multivariate analyses allowed associating a lower phytotoxicity with compost and a higher microbial diversity with digestate. Therefore, only compost presented stability and maturity conditions. We found high released CO2-C, N loss, and P accumulation in soil amended with a high dose of poultry manure during mineralization. However, high doses of poultry manure and digestate increased the biomass production in the valorization assay. We recommend the soil application of stabilized and mature poultry manure-derived amendments, which reduce the negative impacts on the environment and promote more sustainable practices in agricultural systems.


Subject(s)
Composting , Manure , Animals , Crops, Agricultural , Poultry , Soil
3.
PLoS One ; 16(1): e0244724, 2021.
Article in English | MEDLINE | ID: mdl-33406150

ABSTRACT

The gastrointestinal tract of chickens harbors a highly diverse microbiota contributing not only to nutrition, but also to the physiological development of the gastrointestinal tract. Microbiota composition depends on many factors such as the portion of the intestine as well as the diet, age, genotype, or geographical origin of birds. The aim of the present study was to demonstrate the influence of the geographical location over the cecal microbiota from broilers. We used metabarcoding sequencing datasets of the 16S rRNA gene publicly available to compare the composition of the Argentine microbiota against the microbiota of broilers from another seven countries (Germany, Australia, Croatia, Slovenia, United States of America, Hungary, and Malaysia). Geographical location played a dominant role in shaping chicken gut microbiota (Adonis R2 = 0.6325, P = 0.001; Mantel statistic r = 0.1524, P = 4e-04) over any other evaluated factor. The geographical origin particularly affected the relative abundance of the families Bacteroidaceae, Lactobacillaceae, Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. Because of the evident divergence of microbiota among countries we coined the term "local microbiota" as convergent feature that conflates non-genetic factors, in the perspective of human-environmental geography. Local microbiota should be taken into consideration as a native overall threshold value for further appraisals when testing the production performance and performing correlation analysis of gut microbiota modulation against different kind of diet and/or management approaches. In this regard, we described the Argentine poultry cecal microbiota by means of samples both from experimental trials and commercial farms. Likewise, we were able to identify a core microbiota composed of 65 operational taxonomic units assigned to seven phyla and 38 families, with the four most abundant taxa belonging to Bacteroides genus, Rikenellaceae family, Clostridiales order, and Ruminococcaceae family.


Subject(s)
Cecum/microbiology , Chickens/microbiology , Gastrointestinal Microbiome/genetics , Animal Feed , Animals , Australia , Croatia , DNA Barcoding, Taxonomic , Germany , Hungary , Malaysia , RNA, Ribosomal, 16S/genetics , Slovenia , United States
4.
Dev Comp Immunol ; 106: 103606, 2020 05.
Article in English | MEDLINE | ID: mdl-31904432

ABSTRACT

Although the ticks Amblyomma sculptum and Amblyomma aureolatum are important vectors of Rickettsia rickettsii, causative agent of the life-threatening Rocky Mountain spotted fever, A. aureolatum is considerably more susceptible to infection than A. sculptum. As the microbiota can interfere with the colonization of arthropod midgut (MG) by pathogens, in the current study we analyzed the MG microbiota of both tick species. Our results revealed that the MG of A. aureolatum harbors a prominent microbiota, while A. sculptum does not. Remarkably, a significant reduction of the bacterial load was recorded in R. rickettsii-infected A. aureolatum. In addition, the taxonomy analysis of the MG bacterial community of A. aureolatum revealed a dominance of the genus Francisella, suggesting an endosymbiosis. This study is the first step in getting insights into the mechanisms underlying the interactions among Amblyomma species, their microbiota and R. rickettsii. Additional studies to better understand these mechanisms are required and may help the development of novel alternatives to block rickettsial transmission.


Subject(s)
Amblyomma/microbiology , Arachnid Vectors/microbiology , Francisella/physiology , Gastrointestinal Tract/microbiology , Microbiota/physiology , Rickettsia rickettsii/physiology , Rocky Mountain Spotted Fever/transmission , Animals , Disease Susceptibility , Disease Vectors , Host-Pathogen Interactions , Humans , Symbiosis
5.
Biomed Res Int ; 2018: 1879168, 2018.
Article in English | MEDLINE | ID: mdl-29682522

ABSTRACT

Antibiotic growth promoters have been used for decades in poultry farming as a tool to maintain bird health and improve growth performance. Global concern about the recurrent emergence and spreading of antimicrobial resistance is challenging the livestock producers to search for alternatives to feed added antibiotics. The use of phytogenic compounds appears as a feasible option due to their ability to emulate the bioactive properties of antibiotics. However, detailed description about the effects of in-feed antibiotics and alternative natural products on chicken intestinal microbiota is lacking. High-throughput sequencing of 16S rRNA gene was used to study composition of cecal microbiota in broiler chickens supplemented with either bacitracin or a blend of chestnut and quebracho tannins over a 30-day grow-out period. Both tannins and bacitracin had a significant impact on diversity of cecal microbiota. Bacitracin consistently decreased Bifidobacterium while other bacterial groups were affected only at certain times. Tannins-fed chickens showed a drastic decrease in genus Bacteroides while certain members of order Clostridiales mainly belonging to the families Ruminococcaceae and Lachnospiraceae were increased. Different members of these groups have been associated with an improvement of intestinal health and feed efficiency in poultry, suggesting that these bacteria could be associated with productive performance of birds.


Subject(s)
Bacitracin/pharmacology , Chickens/microbiology , Gastrointestinal Microbiome/drug effects , Microbiota/drug effects , Tannins/pharmacology , Animal Feed , Animals , Anti-Bacterial Agents/pharmacology , Bacteroides/drug effects , Bacteroides/genetics , Bifidobacterium/drug effects , Bifidobacterium/genetics , Clostridiales/drug effects , Clostridiales/genetics , Intestines/microbiology , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
6.
Biomed Res Int ; 2017: 9610810, 2017.
Article in English | MEDLINE | ID: mdl-29445749

ABSTRACT

The use of phytogenic dietary additives is being evaluated as a means to improve animal productivity. The effect of tannins seems to be the influence not only directly on the digestive process through binding of dietary proteins but also indirectly over their effects on gastrointestinal microbiota. High-throughput sequencing of 16S rRNA gene was used to analyze the impact of dietary supplementation with a blend of chestnut and quebracho tannins on the rumen microbiota of Holstein steers. Bacterial richness was lower in tannins treated animals, while the overall population structure of rumen microbiota was not significantly disturbed by tannins. The ratio of the phyla Firmicutes and Bacteroidetes, a parameter associated with energy harvesting function, was increased in tannins supplemented animals, essentially due to the selective growth of Ruminococcaceae over members of genus Prevotella. Fibrolytic, amylolytic, and ureolytic bacterial communities in the rumen were altered by tannins, while methanogenic archaea were reduced. Furthermore, ruminal pH was significantly higher in animals supplemented with tannins than in the control group, while urease activity exhibited the opposite pattern. Further work is necessary to assess the relation between tannins impact on rumen microbiota and alteration of rumen fermentation parameters associated with bovine performance.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome/drug effects , Rumen/microbiology , Tannins/administration & dosage , Aesculus/chemistry , Animal Feed , Animals , Archaea/drug effects , Archaea/genetics , Bacteroidetes/drug effects , Bacteroidetes/genetics , Cattle , Digestion , Fermentation , Firmicutes/drug effects , Firmicutes/genetics , Prevotella , RNA, Ribosomal, 16S/genetics , Rumen/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...