Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
FASEB Bioadv ; 4(6): 408-434, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35664831

ABSTRACT

The endogenous DNA damage triggering an aging progression in the elderly is prevented in the youth, probably by naturally occurring DNA gaps. Decreased DNA gaps are found during chronological aging in yeast. So we named the gaps "Youth-DNA-GAPs." The gaps are hidden by histone deacetylation to prevent DNA break response and were also reduced in cells lacking either the high-mobility group box (HMGB) or the NAD-dependent histone deacetylase, SIR2. A reduction in DNA gaps results in shearing DNA strands and decreasing cell viability. Here, we show the roles of DNA gaps in genomic stability and aging prevention in mammals. The number of Youth-DNA-GAPs were low in senescent cells, two aging rat models, and the elderly. Box A domain of HMGB1 acts as molecular scissors in producing DNA gaps. Increased gaps consolidated DNA durability, leading to DNA protection and improved aging features in senescent cells and two aging rat models similar to those of young organisms. Like the naturally occurring Youth-DNA-GAPs, Box A-produced DNA gaps avoided DNA double-strand break response by histone deacetylation and SIRT1, a Sir2 homolog. In conclusion, Youth-DNA-GAPs are a biomarker determining the DNA aging stage (young/old). Box A-produced DNA gaps ultimately reverse aging features. Therefore, DNA gap formation is a potential strategy to monitor and treat aging-associated diseases.

2.
J Transl Med ; 19(1): 231, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059086

ABSTRACT

BACKGROUND: Intratumour heterogeneous gene expression among cancer and cancer stem cells (CSCs) can cause failure of current targeted therapies because each drug aims to target the function of a single gene. Long mononucleotide A-T repeats are cis-regulatory transcriptional elements that control many genes, increasing the expression of numerous genes in various cancers, including lung cancer. Therefore, targeting A-T repeats may dysregulate many genes driving cancer development. Here, we tested a peptide nucleic acid (PNA) oligo containing a long A-repeat sequence [A(15)] to disrupt the transcriptional control of the A-T repeat in lung cancer and CSCs. METHODS: First, we separated CSCs from parental lung cancer cell lines. Then, we evaluated the role of A-T repeat gene regulation by counting the number of repeats in differentially regulated genes between CSCs and the parental cells of the CSCs. After testing the dosage and effect of PNA-A15 on normal and cancer cell toxicity and CSC phenotypes, we analysed genome-wide expression to identify dysregulated genes in CSCs. RESULTS: The number of A-T repeats in genes differentially regulated between CSCs and parental cells differed. PNA-A15 was toxic to lung cancer cells and CSCs but not to noncancer cells. Finally, PNA-A15 dysregulated a number of genes in lung CSCs. CONCLUSION: PNA-A15 is a promising novel targeted therapy agent that targets the transcriptional control activity of multiple genes in lung CSCs.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Antineoplastic Agents/therapeutic use , Gene Expression Regulation , Humans , Lung , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Neoplastic Stem Cells
3.
Front Genet ; 10: 645, 2019.
Article in English | MEDLINE | ID: mdl-31333722

ABSTRACT

DNA methylation of specific genome locations contributes to the distinct functions of multicellular organisms. DNA methylation can be governed by RNA-dependent DNA methylation (RdDM). RdDM is carried out by endogenous small-RNA-guided epigenomic editing complexes that add a methyl group to a precise DNA location. In plants, the Argonaute 4 (AGO4) protein is one of the main catalytic components involved in RdDM. Although small interfering RNA or short hairpin RNA has been shown to be able to guide DNA methylation in human cells, AGO protein-regulated RdDM in humans has not yet been evaluated. This study aimed to identify a key regulatory AGO protein involved in human RdDM by bioinformatics and to explore its function in RdDM by a combination of AGO4 knockdown, Alu small interfering RNA transfection, AGO4-expressing plasmid transfection, chromatin immunoprecipitation, cell-penetrating peptide-tagged AGO4 combined Alu single-guide RNA transfection, and methylation analyses. We found that first, human AGO4 showed stronger genome-wide association with DNA methylation than AGO1-AGO3. Second, endogenous AGO4 depletion demethylated DNA of known AGO4 bound loci. Finally, exogenous AGO4 de novo methylated the bound DNA sequences. Therefore, we discovered that AGO4 plays a role in human RdDM.

4.
Gene ; 699: 54-61, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30858133

ABSTRACT

Epigenetic regulatory changes alter the gene regulation function of DNA repeat elements in cancer and consequently promote malignant phenotypes. Some short tandem repeat sequences, distributed throughout the human genome, can play a role as cis-regulatory elements of the genes. Distributions of tandem long (≥10) and short (<10) A-T repeats in the genome are different depending on gene functions. Long repeats are more commonly found in housekeeping genes and may regulate genes in harmonious fashion. Mononucleotide A-repeats around transcription start sites interact with Argonaute proteins (AGOs) to regulate gene expression. miRNA-bound AGO alterations in cancer have been reported; consequently, these changes would affect genes containing mononucleotide A- and T-repeats. Here, we showed an unprecedented hallmark of gene regulation in cancer. We evaluated the gene expression profiles reported in the Gene Expression Omnibus and found a high density of 13-27 A-T repeats in the up-regulated genes in malignancies derived from the bladder, cervix, head and neck, ovary, vulva, breast, colon, liver, lung, prostate, kidney, thyroid, adrenal gland, bone, blood cells, muscle and brain. Transfection of cell-penetrating protein tag AGO1 containing poly uracils (CPP-AGO1-polyUs) to the lung cancer cell lines altered gene regulation depending on the presence of long A-T repeats. CPP-AGO1-polyUs limited cell proliferation and the ability of a cancer cell to grow into a colony in lung cancer cell lines. In conclusion, long A-T repeats up-regulated many genes in cancer that can be targeted by AGO1 to change the expression of many genes and limited cancer growth.


Subject(s)
Argonaute Proteins/genetics , Eukaryotic Initiation Factors/genetics , Microsatellite Repeats/genetics , Neoplasms/genetics , Transcription, Genetic/genetics , A549 Cells , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation/genetics , HEK293 Cells , Humans , MicroRNAs/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Initiation Site/physiology , Transcriptome/genetics , Up-Regulation/genetics
5.
Nucleic Acids Res ; 41(19): 8872-85, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23935075

ABSTRACT

A-repeats are the simplest form of tandem repeats and are found ubiquitously throughout genomes. These mononucleotide repeats have been widely believed to be non-functional 'junk' DNA. However, studies in yeasts suggest that A-repeats play crucial biological functions, and their role in humans remains largely unknown. Here, we showed a non-random pattern of distribution of sense A- and T-repeats within 20 kb around transcription start sites (TSSs) in the human genome. Different distributions of these repeats are observed upstream and downstream of TSSs. Sense A-repeats are enriched upstream, whereas sense T-repeats are enriched downstream of TSSs. This enrichment directly correlates with repeat size. Genes with different functions contain different lengths of repeats. In humans, tissue-specific genes are enriched for short repeats of <10 bp, whereas housekeeping genes are enriched for long repeats of ≥10 bp. We demonstrated that DICER1 and Argonaute proteins are required for the cis-regulatory role of A-repeats. Moreover, in the presence of a synthetic polymer that mimics an A-repeat, protein binding to A-repeats was blocked, resulting in a dramatic change in the expression of genes containing upstream A-repeats. Our findings suggest a length-dependent cis-regulatory function of A-repeats and that Argonaute proteins serve as trans-acting factors, binding to A-repeats.


Subject(s)
Argonaute Proteins/metabolism , DEAD-box RNA Helicases/metabolism , Microsatellite Repeats , Regulatory Elements, Transcriptional , Ribonuclease III/metabolism , Animals , HEK293 Cells , Humans , Mice , Rats , Transcription Initiation Site
6.
BMC Genomics ; 14: 205, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23530910

ABSTRACT

BACKGROUND: Thousands of intragenic long interspersed element 1 sequences (LINE-1 elements or L1s) reside within genes. These intragenic L1 sequences are conserved and regulate the expression of their host genes. When L1 methylation is decreased, either through chemical induction or in cancer, the intragenic L1 transcription is increased. The resulting L1 mRNAs form RISC complexes with pre-mRNA to degrade the complementary mRNA. In this study, we screened for genes that are involved in intragenic L1 regulation networks. RESULTS: Genes containing L1s were obtained from L1Base (http://l1base.molgen.mpg.de). The expression profiles of 205 genes in 516 gene knockdown experiments were obtained from the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo). The expression levels of the genes with and without L1s were compared using Pearson's chi-squared test. After a permutation based statistical analysis and a multiple hypothesis testing, 73 genes were found to induce significant regulatory changes (upregulation and/or downregulation) in genes with L1s. In detail, 5 genes were found to induce both the upregulation and downregulation of genes with L1s, whereas 27 and 37 genes induced the downregulation and upregulation, respectively, of genes with L1s. These regulations sometimes differed depending on the cell type and the orientation of the intragenic L1s. Moreover, the siRNA-regulating genes containing L1s possess a variety of molecular functions, are responsible for many cellular phenotypes and are associated with a number of diseases. CONCLUSIONS: Cells use intragenic L1s as cis-regulatory elements within gene bodies to modulate gene expression. There may be several mechanisms by which L1s mediate gene expression. Intragenic L1s may be involved in the regulation of several biological processes, including DNA damage and repair, inflammation, immune function, embryogenesis, cell differentiation, cellular response to external stimuli and hormonal responses. Furthermore, in addition to cancer, intragenic L1s may alter gene expression in a variety of diseases and abnormalities.


Subject(s)
Gene Expression Regulation , Long Interspersed Nucleotide Elements/genetics , RNA, Messenger/metabolism , Down-Regulation , Humans , RNA Precursors/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/physiology , Regulatory Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...