Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37240043

ABSTRACT

Industrial wastewater is the main source of an excessive amount of molybdenum (Mo) in natural ecosystems. It is necessary to remove Mo from wastewater before it is discharged into the environment. Molybdate ion(VI) is the most common form of Mo in natural reservoirs and industrial wastewater. In this work, the sorption removal of Mo(VI) from an aqueous medium was evaluated using aluminum oxide. The influence of such factors as the pH of the solution and the temperature was evaluated. Three adsorption isotherms, namely, Langmuir, Freundlich and Temkin, were used to describe the experimental results. It was found that the pseudo-first order kinetic model better fits the kinetic data of the adsorption process, and the maximum Mo(VI) adsorption capacity was 31 mg/g at 25 °C and pH 4. The thermodynamic parameters indicated that the process of Mo(VI) adsorption on Al2O3 was exothermic and spontaneous. It was shown that the adsorption of Mo strongly depends on pH. The most effective adsorption was observed at pH values below 7. Experiments on adsorbent regeneration showed that Mo(VI) can be effectively desorbed from the aluminum oxide surface into a phosphate solution in a wide range of pH values. After the desorption of Mo(VI) in a phosphate solution, alumina was found to be suitable for repeating the procedure at least five times.


Subject(s)
Molybdenum , Water Pollutants, Chemical , Wastewater , Aluminum Oxide , Adsorption , Ecosystem , Thermodynamics , Phosphates , Hydrogen-Ion Concentration , Kinetics
2.
Materials (Basel) ; 15(7)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35407750

ABSTRACT

This paper presents a study of Al2O3-ZrO2 (ZTA) nanocomposites with different contents of reduced graphene oxide (rGO). The influence of the rGO content on the physico-mechanical properties of the oxide composite was revealed. Graphene oxide was obtained using a modified Hummers method. Well-dispersed ZTA-GO nanopowders were produced using the colloidal processing method. Using spark plasma sintering technology (SPS), theoretically dense composites were obtained, which also reduced GO during SPS. The microstructure, phase composition, and physico-mechanical properties of the sintered composites were studied. The sintered ZTA composite with an in situ reduced graphene content of 0.28 wt.% after the characterization showed improved mechanical properties: bending strength was 876 ± 43 MPa, fracture toughness-6.8 ± 0.3 MPa·m1/2 and hardness-17.6 ± 0.3 GPa. Microstructure studies showed a uniform zirconia distribution in the ZTA ceramics. The study of the electrical conductivity of reduced graphene oxide-containing composites showed electrical conductivity above the percolation threshold with a small content of graphene oxide (0.28 wt.%). This electrical conductivity makes it possible to produce sintered ceramics by electrical discharge machining (EDM), which significantly reduces the cost of manufacturing complex-shaped products. Besides improved mechanical properties and EDM machinability, 0.28 wt.% rGO composites demonstrated high resistance to hydrothermal degradation.

3.
Nanomaterials (Basel) ; 10(7)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630782

ABSTRACT

In the present work, the state of the art of the most common additive manufacturing (AM) technologies used for the manufacturing of complex shape structures of graphene-based ceramic nanocomposites, ceramic and graphene-based parts is explained. A brief overview of the AM processes for ceramic, which are grouped by the type of feedstock used in each technology, is presented. The main technical factors that affect the quality of the final product were reviewed. The AM processes used for 3D printing of graphene-based materials are described in more detail; moreover, some studies in a wide range of applications related to these AM techniques are cited. Furthermore, different feedstock formulations and their corresponding rheological behavior were explained. Additionally, the most important works about the fabrication of composites using graphene-based ceramic pastes by Direct Ink Writing (DIW) are disclosed in detail and illustrated with representative examples. Various examples of the most relevant approaches for the manufacturing of graphene-based ceramic nanocomposites by DIW are provided.

SELECTION OF CITATIONS
SEARCH DETAIL
...