Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Epidemiol ; 5(6): e180, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34909560

ABSTRACT

BACKGROUND: Associations between mortality and exposure to ambient air pollution are usually explored using concentrations of residential outdoor fine particulate matter (PM2.5) to estimate individual exposure. Such studies all have an important limitation in that they do not capture data on individual mobility throughout the day to areas where concentrations may be substantially different, leading to possible exposure misclassification. We examine the possible role of outdoor PM2.5 concentrations at work for a large population-based mortality cohort. METHODS: Using the 2001 Canadian Census Health and Environment Cohort (CanCHEC), we created a time-weighted average that incorporates employment hours worked in the past week and outdoor PM2.5 concentration at work and home. We used a Cox proportional hazard model with a 15-year follow-up (2001 to 2016) to explore whether inclusion of workplace estimates had an impact on hazard ratios for mortality for this cohort. RESULTS: Hazard ratios relying on outdoor PM2.5 concentration at home were not significantly different from those using a time-weighted estimate, for the full cohort, nor for those who commute to a regular workplace. When exploring cohort subgroups according to neighborhood type and commute distance, there was a notable but insignificant change in risk of nonaccidental death for those living in car-oriented neighborhoods, and with commutes greater than 10 km. CONCLUSIONS: Risk analyses performed with large cohorts in low-pollution environments do not seem to be biased if relying solely on outdoor PM2.5 concentrations at home to estimate exposure.

2.
Environ Health Perspect ; 127(10): 107008, 2019 10.
Article in English | MEDLINE | ID: mdl-31638837

ABSTRACT

BACKGROUND: Ambient fine particulate air pollution with aerodynamic diameter ≤2.5 µm (PM2.5) is an important contributor to the global burden of disease. Information on the shape of the concentration-response relationship at low concentrations is critical for estimating this burden, setting air quality standards, and in benefits assessments. OBJECTIVES: We examined the concentration-response relationship between PM2.5 and nonaccidental mortality in three Canadian Census Health and Environment Cohorts (CanCHECs) based on the 1991, 1996, and 2001 census cycles linked to mobility and mortality data. METHODS: Census respondents were linked with death records through 2016, resulting in 8.5 million adults, 150 million years of follow-up, and 1.5 million deaths. Using annual mailing address, we assigned time-varying contextual variables and 3-y moving-average ambient PM2.5 at a 1×1 km spatial resolution from 1988 to 2015. We ran Cox proportional hazards models for PM2.5 adjusted for eight subject-level indicators of socioeconomic status, seven contextual covariates, ozone, nitrogen dioxide, and combined oxidative potential. We used three statistical methods to examine the shape of the concentration-response relationship between PM2.5 and nonaccidental mortality. RESULTS: The mean 3-y annual average estimate of PM2.5 exposure ranged from 6.7 to 8.0 µg/m3 over the three cohorts. We estimated a hazard ratio (HR) of 1.053 [95% confidence interval (CI): 1.041, 1.065] per 10-µg/m3 change in PM2.5 after pooling the three cohort-specific hazard ratios, with some variation between cohorts (1.041 for the 1991 and 1996 cohorts and 1.084 for the 2001 cohort). We observed a supralinear association in all three cohorts. The lower bound of the 95% CIs exceeded unity for all concentrations in the 1991 cohort, for concentrations above 2 µg/m3 in the 1996 cohort, and above 5 µg/m3 in the 2001 cohort. DISCUSSION: In a very large population-based cohort with up to 25 y of follow-up, PM2.5 was associated with nonaccidental mortality at concentrations as low as 5 µg/m3. https://doi.org/10.1289/EHP5204.


Subject(s)
Air Pollution/statistics & numerical data , Environmental Exposure/statistics & numerical data , Mortality/trends , Particulate Matter , Air Pollutants , Canada/epidemiology , Censuses , Cohort Studies , Humans , Nitrogen Dioxide , Ozone , Proportional Hazards Models
3.
Environ Health ; 18(1): 84, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601202

ABSTRACT

BACKGROUND: Approximately 2.9 million deaths are attributed to ambient fine particle air pollution around the world each year (PM2.5). In general, cohort studies of mortality and outdoor PM2.5 concentrations have limited information on individuals exposed to low levels of PM2.5 as well as covariates such as smoking behaviours, alcohol consumption, and diet which may confound relationships with mortality. This study provides an updated and extended analysis of the Canadian Community Health Survey-Mortality cohort: a population-based cohort with detailed PM2.5 exposure data and information on a number of important individual-level behavioural risk factors. We also used this rich dataset to provide insight into the shape of the concentration-response curve for mortality at low levels of PM2.5. METHODS: Respondents to the Canadian Community Health Survey from 2000 to 2012 were linked by postal code history from 1981 to 2016 to high resolution PM2.5 exposure estimates, and mortality incidence to 2016. Cox proportional hazard models were used to estimate the relationship between non-accidental mortality and ambient PM2.5 concentrations (measured as a three-year average with a one-year lag) adjusted for socio-economic, behavioural, and time-varying contextual covariates. RESULTS: In total, 50,700 deaths from non-accidental causes occurred in the cohort over the follow-up period. Annual average ambient PM2.5 concentrations were low (i.e. 5.9 µg/m3, s.d. 2.0) and each 10 µg/m3 increase in exposure was associated with an increase in non-accidental mortality (HR = 1.11; 95% CI 1.04-1.18). Adjustment for behavioural covariates did not materially change this relationship. We estimated a supra-linear concentration-response curve extending to concentrations below 2 µg/m3 using a shape constrained health impact function. Mortality risks associated with exposure to PM2.5 were increased for males, those under age 65, and non-immigrants. Hazard ratios for PM2.5 and mortality were attenuated when gaseous pollutants were included in models. CONCLUSIONS: Outdoor PM2.5 concentrations were associated with non-accidental mortality and adjusting for individual-level behavioural covariates did not materially change this relationship. The concentration-response curve was supra-linear with increased mortality risks extending to low outdoor PM2.5 concentrations.


Subject(s)
Air Pollutants/adverse effects , Cardiovascular Diseases/mortality , Environmental Exposure/adverse effects , Particulate Matter/adverse effects , Respiratory Tract Diseases/mortality , Adult , Aged , Aged, 80 and over , Air Pollution/statistics & numerical data , Canada/epidemiology , Female , Health Surveys , Humans , Incidence , Male , Middle Aged , Prospective Studies , Public Health , Risk Assessment
4.
Sci Rep ; 7(1): 16401, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180643

ABSTRACT

Outdoor fine particulate air pollution (PM2.5) is known to increase mortality risk and is recognized as an important contributor to global disease burden. However, less is known about how oxidant gases may modify the chronic health effects of PM2.5. In this study, we examined how the oxidant capacity of O3 and NO2 (using a redox-weighted average, Ox) may modify the relationship between PM2.5 and mortality in the 2001 Canadian Census Health and Environment Cohort. In total, 2,448,500 people were followed over a 10.6-year period. Each 3.86 µg/m3 increase in PM2.5 was associated with nonaccidental (Hazard Ratio (HR) = 1.095, 95% CI: 1.077, 1.112), cardiovascular (HR = 1.088, 95% CI: 1.059, 1.118), and respiratory mortality (HR = 1.110, 95% CI: 1.051, 1.171) in the highest tertile of Ox whereas weaker/null associations were observed in the middle and lower tertiles. Analysis of joint non-linear concentration-response relationships for PM2.5 and Ox suggested threshold concentrations between approximately 23 and 25 ppb with Ox concentrations above these values strengthening PM2.5-mortality associations. Overall, our findings suggest that oxidant gases enhance the chronic health risks of PM2.5. In some areas, reductions in Ox concentrations may have the added benefit of reducing the public health impacts of PM2.5 even if mass concentrations remain unchanged.


Subject(s)
Cardiovascular Diseases/mortality , Nitric Oxide/adverse effects , Ozone/adverse effects , Particulate Matter/adverse effects , Respiratory Tract Diseases/mortality , Adult , Aged , Aged, 80 and over , Canada/epidemiology , Cardiovascular Diseases/epidemiology , Environmental Exposure/adverse effects , Female , Geography, Medical , Humans , Male , Middle Aged , Proportional Hazards Models , Public Health Surveillance , Respiratory Tract Diseases/epidemiology , Young Adult
5.
Environ Res ; 159: 406-415, 2017 11.
Article in English | MEDLINE | ID: mdl-28850858

ABSTRACT

BACKGROUND: Large cohort studies have been used to characterise the association between long-term exposure to fine particulate matter (PM2.5) air pollution with non-accidental, and cause-specific mortality. However, there has been no consensus as to the shape of the association between concentration and response. METHODS: To examine the shape of this association, we developed a new cohort based on respondents to the 2001 Canadian census long-form. We applied new annual PM2.5 concentration estimates based on remote sensing and ground measurements for Canada at a 1km spatial scale from 1998 to 2011. We followed 2.4 million respondents who were non-immigrants aged 25-90 years and did not reside in an institution over a 10 year period for mortality. Exposures were assigned as a 3-year mean prior to the follow-up year. Income tax files were used to account for residential mobility among respondents using postal codes, with probabilistic imputation used for missing postal codes in the tax data. We used Cox survival models to determine hazard ratios (HRs) for cause-specific mortality. We also estimated Shape Constrained Health Impact Functions (a concentration-response function) for selected causes of death. RESULTS: In models stratified by age, sex, airshed, and population centre size, and adjusted for individual and neighbourhood socioeconomic variables, HR estimates for non-accidental mortality were HR = 1.18 (95% CI: 1.15-1.21) per 10µg/m3 increase in concentration. We observed higher HRs for cardiovascular disease (HR=1.25; 95% CI: 1.19-1.31), cardio-metabolic disease (HR = 1.27; 95% CI: 1.21-1.33), ischemic heart disease (HR = 1.36; 95% CI: 1.28-1.44) and chronic obstructive pulmonary disease (COPD) mortality (HR = 1.24; 95% CI: 1.11-1.39) compared to HR for all non-accidental causes of death. For non-accidental, cardio-metabolic, ischemic heart disease, respiratory and COPD mortality, the shape of the concentration-response curve was supra-linear, with larger differences in relative risk for lower concentrations. For both pneumonia and lung cancer, there was some suggestion that the curves were sub-linear. CONCLUSIONS: Associations between ambient concentrations of fine particulate matter and several causes of death were non-linear for each cause of death examined.


Subject(s)
Air Pollutants/analysis , Cardiovascular Diseases/mortality , Environmental Exposure , Particulate Matter/analysis , Adult , Aged , Aged, 80 and over , Canada/epidemiology , Cardiovascular Diseases/etiology , Cause of Death , Censuses , Female , Humans , Male , Middle Aged , Models, Theoretical , Particle Size , Proportional Hazards Models
6.
J Vector Ecol ; 37(1): 124-36, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22548546

ABSTRACT

Recent collection data indicate that at least four potential malaria vectors occupy more widespread distributions within the Andean highlands than in the past. Since habitat elimination is an important aspect of malaria control, it is vital to characterize larval habitats for Anopheles species within both lowland and highland sites. To that end, 276 sites within Ecuador were surveyed between 2008 and 2010. Characteristics of Anopheles-present sites for four species were compared to Anopheles-absent sites within the same geographical range and also to Anopheles-absent sites within a highland range representing potential future habitats. Thermochron iButtons(©) were used to describe the daily temperature variation within a subset of potential habitats. Anopheles albimanus (W.) was positively associated with permanent habitats, sand substrates, floating algae (cyanobacterial mats), and warmer temperatures in both comparisons. Anopheles pseudopunctipennis (T.) was associated with floating algae (cyanobacterial mats), warmer temperatures, and higher water clarity in both comparisons. Anopheles punctimacula (D.&K.) was negatively associated with floating algae and positively associated with dissolved oxygen in both comparisons. Anopheles oswaldoi s.l. (P.) was not significantly associated with any parameters more often than expected given larval-absent sites. The results indicate that minimum water temperatures might limit the upper altitudinal distribution of An. albimanus (18.7° C) and An. pseudopunctipennis (16.0° C).


Subject(s)
Anopheles/physiology , Larva/physiology , Animals , Ecosystem , Ecuador , Insect Vectors/physiology
7.
Emerg Infect Dis ; 18(4): 615-22, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22469234

ABSTRACT

A recent epidemic of malaria in the highlands of Bolivia and establishment of multiple Anopheles species mosquitoes in the highlands of Ecuador highlights the reemergence of malaria in the Andes Mountains in South America. Because malaria was endemic to many highland valleys at the beginning of the 20th century, this review outlines the 20th century history of malaria in the highlands of Ecuador, and focuses on its incidence (e.g., geographic distribution) and elimination from the northern highland valleys of Pichincha and Imbabura and the role of the Guayaquil to Quito railway in creating highland larval habitat and inadvertently promoting transportation of the vector and parasite. Involvement of control organizations in combating malaria in Ecuador is also outlined in a historical context.


Subject(s)
Malaria/epidemiology , Altitude , Animals , Anopheles/parasitology , Ecuador/epidemiology , History, 20th Century , Humans , Incidence , Insect Vectors/parasitology , Malaria/history , Malaria/prevention & control
8.
Front Physiol ; 3: 59, 2012.
Article in English | MEDLINE | ID: mdl-22454623

ABSTRACT

Larval habitat for three highland Anopheles species: Anopheles albimanus Wiedemann, Anopheles pseudopunctipennis Theobald, and Anopheles punctimacula Dyar and Knab was related to human land uses, rivers, roads, and remotely sensed land cover classifications in the western Ecuadorian Andes. Of the five commonly observed human land uses, cattle pasture (n = 30) provided potentially suitable habitat for A. punctimacula and A. albimanus in less than 14% of sites, and was related in a principal components analysis (PCA) to the presence of macrophyte vegetation, greater surface area, clarity, and algae cover. Empty lots (n = 30) were related in the PCA to incident sunlight and provided potential habitat for A. pseudopunctipennis and A. albimanus in less than 14% of sites. The other land uses surveyed (banana, sugarcane, and mixed tree plantations; n = 28, 21, 25, respectively) provided very little standing water that could potentially be used for larval habitat. River edges and eddies (n = 41) were associated with greater clarity, depth, temperature, and algae cover, which provide potentially suitable habitat for A. albimanus in 58% of sites and A. pseudopunctipennis in 29% of sites. Road-associated water bodies (n = 38) provided potential habitat for A. punctimacula in 44% of sites and A. albimanus in 26% of sites surveyed. Species collection localities were compared to land cover classifications using Geographic Information Systems software. All three mosquito species were associated more often with the category "closed/open broadleaved evergreen and/or semi-deciduous forests" than expected (P ≤ 0.01 in all cases), given such a habitat's abundance. This study provides evidence that specific human land uses create habitat for potential malaria vectors in highland regions of the Andes.

9.
Malar J ; 10: 236, 2011 Aug 11.
Article in English | MEDLINE | ID: mdl-21835004

ABSTRACT

BACKGROUND: Several recent climate change reviews have stressed the possibility of some malaria vectors occupying regions of higher altitudes than previously recorded. Indeed, highland malaria has been observed in several African nations, possibly attributable to changes in land use, vector control and local climate. This study attempts to expand the current knowledge of the distribution of common Anopheles species in Ecuador, with particular attention to highland regions (> 500 m) of the Andes. METHODS: Extensive field collections of larvae were undertaken in 2008, 2009 and 2010 throughout all regions of Ecuador (except the lower-altitude Amazonian plain) and compared to historical distribution maps reproduced from the 1940s. Larvae were identified using both a morphological key and sequencing of the 800 bp region of the CO1 mitochondrial gene. In addition, spatial statistics (Getis-Ord Hotspot Analysis: Gi*) were used to determine high and low-density clusters of each species in Ecuador. RESULTS: Distributions have been updated for five species of Anopheles in Ecuador: Anopheles albimanus, Anopheles pseudopunctipennis, Anopheles punctimacula, Anopheles eiseni and Anopheles oswaldoi s.l.. Historical maps indicate that An. pseudopunctipennis used to be widespread in highland Andean valleys, while other species were completely restricted to lowland areas. By comparison, updated maps for the other four collected species show higher maximum elevations and/or more widespread distributions in highland regions than previously recorded. Gi* analysis determined some highland hot spots for An. albimanus, but only cold spots for all other species. CONCLUSIONS: This study documents the establishment of multiple anopheline species in high altitude regions of Ecuador, often in areas where malaria eradication programs are not focused.


Subject(s)
Anopheles/classification , Anopheles/growth & development , Altitude , Animals , Anopheles/anatomy & histology , Anopheles/genetics , Cluster Analysis , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Ecuador , Genotype , Larva/anatomy & histology , Larva/classification , Larva/genetics , Larva/growth & development , Molecular Sequence Data , Phylogeography , Sequence Analysis, DNA
10.
Malar Res Treat ; 2011: 765125, 2011.
Article in English | MEDLINE | ID: mdl-22363897

ABSTRACT

To control malaria effectively, it is essential to understand the current knowledge, beliefs, concerns, land management practices, and mosquito bite protection methods in use by citizens. This study presents a comparative, quantitative, interview-based study of land owners and/or managers (n = 262) in the Ecuadorian lowlands (presently considered malarious) (n = 131) and highlands (potentially malarious in the future) (n = 131). Although respondents had a strong understanding of where the disease occurs in their own country and of the basic relationship among standing water, mosquitoes, and malaria, about half of respondents in potential risk areas denied the current possibility of malaria infection on their own property. As well, about half of respondents with potential anopheline larval habitat did not report its presence, likely due to a highly specific definition of suitable mosquito habitat. Most respondents who are considered at risk of malaria currently use at least one type of mosquito bite prevention, most commonly bed nets.

SELECTION OF CITATIONS
SEARCH DETAIL
...