Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
Bioact Mater ; 27: 447-460, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37168023

ABSTRACT

In this study, advanced techniques such as atom probe tomography, atomic force microscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy were used to determine the corrosion mechanism of the as-ECAPed Zn-0.8Mg-0.2Sr alloy. The influence of microstructural and surface features on the corrosion mechanism was investigated. Despite its significance, the surface composition before exposure is often neglected by the scientific community. The analyses revealed the formation of thin ZnO, MgO, and MgCO3 layers on the surface of the material before exposure. These layers participated in the formation of corrosion products, leading to the predominant occurrence of hydrozincite. In addition, the layers possessed different resistance to the environment, resulting in localized corrosion attacks. The segregation of Mg on the Zn grain boundaries with lower potential compared with the Zn-matrix was revealed by atom probe tomography and atomic force microscopy. The degradation process was initiated by the activity of micro-galvanic cells, specifically Zn - Mg2Zn11/SrZn13. This process led to the activity of the crevice corrosion mechanism and subsequent attack to a depth of 250 µm. The corrosion rate of the alloy determined by the weight loss method was 0.36 mm·a-1. Based on this detailed study, the degradation mechanism of the Zn-0.8Mg-0.2Sr alloy is proposed.

3.
Materials (Basel) ; 15(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36499874

ABSTRACT

Zinc materials are considered promising candidates for bioabsorbable medical devices used for the fixation of broken bones or stents. Materials for these applications must meet high mechanical property requirements. One of the ways to fulfil these demands is related to microstructure refinement, particularly the decrease in grain size. In the present work, we combine two powder metallurgy techniques (mechanical alloying-MA, and spark plasma sintering-SPS) to prepare Zn-1Mg-0.5Sr nanograin material. The microstructure of compacted material consisted of Zn grains and particles of Mg2Zn11 intermetallic phases from 100 to 500 nm in size, which resulted in high values of hardness and a compressive strength equal to 86 HV1 and 327 MPa, respectively. In this relation, the combination of the suggested techniques provides an innovative way to form extremely fine microstructures without significant coarsening during powder compaction at increased temperatures.

4.
Materials (Basel) ; 15(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500202

ABSTRACT

In this study, the Zn-0.8Mg-0.28CaO wt.% composite was successfully prepared using different conditions of ball milling (rotations and time) followed by a direct extrusion process. These materials were characterized from the point of view of microstructure and compressive properties, and the correlation between those characteristics was found. Microstructures of individual materials possessed differences in grain size, where the grain size decreased with the intensified conditions (milling speed and time). However, the mutual relation between grain size and compressive strength was not linear. This was caused by the effect of other factors, such as texture, intermetallic phases, and pores. Material texture affects the mechanical properties by a different activity ratio between basal and pyramidal slips. The properties of intermetallic particles and pores were determined in material volume using micro-computed tomography (µCT), enhancing the precision of our assumptions compared with commonly applied methods. Based on that, and the analysis after the compressive tests, we were able to determine the influence of aspect ratio, feret diameters, and volume content of intermetallic phases and pores on mechanical behavior. The influence of the aspects on mechanical behavior is described and discussed.

5.
Materials (Basel) ; 15(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35955207

ABSTRACT

Zinc and its alloys are considered as promising materials for the preparation of biodegradable medical devices (stents and bone fixation screws) due to their enhanced biocompatibility. These materials must achieve an ideal combination of mechanical and corrosion properties that can be influenced by alloying or thermomechanical processes. This paper presents the effects of different mechanical alloying (MA) parameters on the composition of Zn-1Mg powder. At the same time, this study describes the influence of preparation by MA on Zn-6Mg and Zn-16Mg alloys. The selected powders were compacted by the spark plasma sintering (SPS) method. Subsequently, their microstructures were studied and their mechanical properties were tested. The overall process led to a significant grain refinement (629 ± 274 nm for Zn-1Mg) and the formation of new intermetallic phases (Mg2Zn11, MgZn2). The compressive properties of the sintered samples were mainly related to the concentration of the alloying elements, where an increase in concentration led to an improvement in strength but a deterioration in ductility. According to the obtained results, the best properties were obtained for the Zn-1Mg alloy.

6.
Int J Mol Sci ; 22(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34948238

ABSTRACT

The increasing incidence of trauma in medicine brings with it new demands on the materials used for the surgical treatment of bone fractures. Titanium, its alloys, and steel are used worldwide in the treatment of skeletal injuries. These metallic materials, although inert, are often removed after the injured bone has healed. The second-stage procedure-the removal of the plates and screws-can overwhelm patients and overload healthcare systems. The development of suitable absorbable metallic materials would help us to overcome these issues. In this experimental study, we analyzed an extruded Zn-0.8Mg-0.2Sr (wt.%) alloy on a rabbit model. From this alloy we developed screws which were implanted into the rabbit tibia. After 120, 240, and 360 days, we tested the toxicity at the site of implantation and also within the vital organs: the liver, kidneys, and brain. The results were compared with a control group, implanted with a Ti-based screw and sacrificed after 360 days. The samples were analyzed using X-ray, micro-CT, and a scanning electron microscope. Chemical analysis revealed only small concentrations of zinc, strontium, and magnesium in the liver, kidneys, and brain. Histologically, the alloy was verified to possess very good biocompatibility after 360 days, without any signs of toxicity at the site of implantation. We did not observe raised levels of Sr, Zn, or Mg in any of the vital organs when compared with the Ti group at 360 days. The material was found to slowly degrade in vivo, forming solid corrosion products on its surface.


Subject(s)
Absorbable Implants , Alloys , Materials Testing , Tibia/metabolism , Tibial Fractures , Alloys/chemistry , Alloys/pharmacokinetics , Alloys/pharmacology , Animals , Humans , Magnesium/chemistry , Magnesium/pharmacokinetics , Magnesium/pharmacology , Rabbits , Strontium/chemistry , Strontium/pharmacokinetics , Strontium/pharmacology , Tibia/pathology , Tibial Fractures/metabolism , Tibial Fractures/surgery , Zinc/chemistry , Zinc/pharmacokinetics , Zinc/pharmacology
7.
Materials (Basel) ; 14(12)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199249

ABSTRACT

In this pilot study, we investigated the biocompatibility and degradation rate of an extruded Zn-0.8Mg-0.2Sr (wt.%) alloy on a rabbit model. An alloy screw was implanted into one of the tibiae of New Zealand White rabbits. After 120 days, the animals were euthanized. Evaluation included clinical assessment, microCT, histological examination of implants, analyses of the adjacent bone, and assessment of zinc, magnesium, and strontium in vital organs (liver, kidneys, brain). The bone sections with the implanted screw were examined via scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS). This method showed that the implant was covered by a thin layer of phosphate-based solid corrosion products with a thickness ranging between 4 and 5 µm. Only negligible changes of the implant volume and area were observed. The degradation was not connected with gas evolution. The screws were fibrointegrated, partially osseointegrated histologically. We observed no inflammatory reaction or bone resorption. Periosteal apposition and formation of new bone with a regular structure were frequently observed near the implant surface. The histological evaluation of the liver, kidneys, and brain showed no toxic changes. The levels of Zn, Mg, and Sr after 120 days in the liver, kidneys, and brain did not exceed the reference values for these elements. The alloy was safe, biocompatible, and well-tolerated.

8.
Mater Sci Eng C Mater Biol Appl ; 122: 111924, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33641917

ABSTRACT

Zinc (Zn) alloys seem to be promising candidates for application in orthopaedic or cardiovascular medical implants. In this area, high standards are required regarding the biocompatibility as well as excellent mechanical and tailored degradation properties. In the presented study, a novel Zn-0.8Mg-0.2Sr (wt%) alloy has been fabricated by the combination of casting, homogenization annealing and extrusion at 200 °C. As a consequence of its fine-grained homogenous microstructure, the prepared material is characterized by an excellent combination of tensile yield strength, ultimate tensile strength and elongation corresponding to 244 MPa, 324 MPa and 20% respectively. The in vitro corrosion rates of the Zn-0.8Mg-0.2Sr alloy in the physiological solution and the simulated body fluid were 244 µm/a and 69.8 µm/a, respectively. Furthermore, an extract test revealed that Zn-0.8Mg-0.2Sr extracts diluted to 25% had no adverse effects towards L929 fibroblasts, TAg periosteal cells and Saos-2 osteoblasts. Moreover, the Zn-0.8Mg-0.2Sr surface showed effective inhibition of initial Streptococcus gordonii adhesion and biofilm formation. These results indicated the Zn-0.8Mg-0.2Sr alloy, which has superior mechanical properties, might be a promising candidate for materials used for load-bearing applications.


Subject(s)
Alloys , Zinc , Absorbable Implants , Biocompatible Materials , Corrosion , Materials Testing , Tensile Strength
9.
Materials (Basel) ; 13(24)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33316967

ABSTRACT

Titanium and its alloys belong to the group of materials used in implantology due to their biocompatibility, outstanding corrosion resistance and good mechanical properties. However, the value of Young's modulus is too high in comparison with the human bone, which could result in the failure of implants. This problem can be overcome by creating pores in the materials, which, moreover, improves the osseointegration. Therefore, TiSi2 and TiSi2 with 20 wt.% of the pore-forming agent (PA) were prepared by reactive sintering and compared with pure titanium and titanium with the addition of various PA content in this study. For manufacturing implants (especially augmentation or spinal replacements), titanium with PA seemed to be more suitable than TiSi2 + 20 wt.% PA. In addition, titanium with 30 or 40 wt.% PA contained pores with a size allowing bone tissue ingrowth. Furthermore, Ti + 30 wt.% PA was more suitable material in terms of corrosion resistance; however, its Young's modulus was higher than that of the human bone while Ti + 40 wt.% PA had a Young's modulus close to the human bone.

10.
J Mech Behav Biomed Mater ; 108: 103796, 2020 08.
Article in English | MEDLINE | ID: mdl-32469720

ABSTRACT

The Zn-based alloys, alloyed with the elements of the 2nd group of the periodic table, are considered as potential biodegradable materials suitable for the fabrication of small orthopaedic implants or cardiovascular stents. Unfortunately, the as-cast Zn-based alloys do not fulfil the requirements for mechanical properties for such applications. Extrusion is a thermomechanical process which is very powerful for breaking the cast microstructure and enhancing mechanical characteristics of metallic materials. In this study, we focused on the influence of extrusion parameters, such as temperature and extrusion ratio, on microstructural and mechanical characteristics of a ZnMg0.8Ca0.2 (wt.%) alloy. The extrusion led to a significant grain refinement and the formation of a crystallographic texture. Extrusion temperature played a more significant role in the mean grain size compared to the extrusion ratio (ER). At lower extrusion temperatures, the texture was less intensive and the subsequent mechanical anisotropy was weaker. Constants for the prediction of the grain size based on the Zener-Hollomon parameter were obtained. Prediction of mechanical properties using the Hall-Petch relationship appeared to be difficult because of the dependence of the texture on the extrusion temperature. Extrusion at the temperatures of 200 °C (ER = 25:1) and 150 °C (ER = 11:1) led to mechanical performance fulfilling the requirements for implantology.


Subject(s)
Alloys , Biocompatible Materials , Corrosion , Stents , Temperature
11.
Materials (Basel) ; 13(7)2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32268568

ABSTRACT

Zinc and its alloys belong to a group of biodegradable materials, which can be potentially used for the preparation of temporary orthopedic implants. The research of biodegradable zinc materials revealed a lot of limitations; however, the new processing approaches of those materials can enhance their properties, which are insufficient for now. In this study, the zinc composite with 8 wt.% of hydroxyapatite (Zn/HA8) prepared for the first time by extrusion process was characterized from the point of view of the structural, mechanical and corrosion properties. The extrusion process led to good integrity of the interfaces between the zinc and hydroxyapatite particles. Mechanical behavior confirmed the role of hydroxyapatite as a defect in the material structure, which led to a decrease of the Zn/HA8 mechanical properties by approximately 30% (compressive yield strength (CYS) = 154 MPa Zn, 113 MPa Zn/HA8). Despite that, the Zn/HA8 composite showed sufficient mechanical properties for cancellous bone replacement and reached the lower limit for cortical bone. Additionally, the presence of hydroxyapatite caused the preferential precipitation of hydroxyapatite (HA) from the solution and can lead to a significant enhancement of the tissue/implant interface interactions.

12.
Am J Bot ; 107(1): 66-90, 2020 01.
Article in English | MEDLINE | ID: mdl-31903548

ABSTRACT

PREMISE: The origin of allopolyploids is believed to shape their evolutionary potential, ecology, and geographical ranges. Morphologically distinct apomictic types sharing the same parental species belong to the most challenging groups of polyploids. We evaluated the origins and variation of two triploid taxa (Hieracium pallidiflorum, H. picroides) presumably derived from the same diploid parental pair (H. intybaceum, H. prenanthoides). METHODS: We used a suite of approaches ranging from morphological, phylogenetic (three unlinked molecular markers), and cytogenetic analyses (in situ hybridization) to genome size screening and genome skimming. RESULTS: Genotyping proved the expected parentage of all analyzed accessions of H. pallidiflorum and H. picroides and revealed that nearly all of them originated independently. Genome sizes and genome dosage largely corresponded to morphology, whereas the maternal origin of the allopolyploids had no discernable effect. Polyploid accessions of both parental species usually contained genetic material from other species. Given the phylogenetic distance of the parents, their chromosomes appeared only weakly differentiated in genomic in situ hybridization (GISH), as well as in overall comparisons of the repetitive fraction of their genomes. Furthermore, the repeatome of a phylogenetically more closely related species (H. umbellatum) differed significantly more. CONCLUSIONS: We proved (1) multiple origins of hybridogeneous apomicts from the same diploid parental taxa, and (2) allopolyploid origins of polyploid accessions of the parental species. We also showed that the evolutionary dynamics of very fast evolving markers such as satellite DNA or transposable elements does not necessarily follow patterns of speciation.


Subject(s)
Biological Evolution , Polyploidy , Diploidy , Genome, Plant , Genomics , Humans , Phylogeny
13.
Materials (Basel) ; 12(23)2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31783622

ABSTRACT

Zinc-based alloys represent one of the most highly developed areas regarding biodegradable materials. Despite this, some general deficiencies such as cytotoxicity and poor mechanical properties (especially elongation), are not properly solved. In this work, a Zn-5Mg (5 wt.% Mg) composite material with tailored mechanical and superior corrosion properties is prepared by powder metallurgy techniques. Pure Zn and Mg are mixed and subsequently compacted by extrusion at 200 °C and an extrusion ratio of 10. The final product possesses appropriate mechanical properties (tensile yield strength = 148 MPa, ultimate tensile strength = 183 MPa, and elongation = 16%) and decreased by four times the release of Zn in the initial stage of degradation compared to pure Zn, which can highly decrease cytotoxicity effects and therefore positively affect the initial stage of the healing process.

14.
Micron ; 116: 1-4, 2019 01.
Article in English | MEDLINE | ID: mdl-30219738

ABSTRACT

Ion beam milling, as a method of surface design for tip analytical techniques, was explored. A sample of clay, embedded in a resin, was treated by the ion beam and allowed AFM (a typical tip technique) to be successfully applied. The method is suitable for advanced tip analyses based on AFM, like TERS or SNOM, and for samples that are not possible to prepare by standard mechanical methods. The approach can be useful for characterisation of the surfaces of many different types of materials in versatile applications such as catalysis, corrosion science or advanced material characterisation.

SELECTION OF CITATIONS
SEARCH DETAIL
...