Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aesthet Surg J ; 41(11): NP1710-NP1720, 2021 10 15.
Article in English | MEDLINE | ID: mdl-33252635

ABSTRACT

BACKGROUND: Skin scarring can occur after punch biopsies, prohibiting their routine utilization, especially in the central face. OBJECTIVES: This paper describes a scarless, 0.33-mm-diameter skin microbiopsy for molecular analysis of skin. METHODS: This is was single-center, randomized, prospective study with 15 patients receiving no biopsy or biopsy on the left or right nasolabial fold. Six blinded raters assessed participant photos at baseline, 1 month, and 3 months post biopsy to evaluate for a visualized scar. Patient and Observer Scar Assessment Scale was completed. Additionally, biopsies from various skin regions of body along with arm skin after treatment with a single Erbium-YAG laser were processed for molecular analysis. RESULTS: No patients exhibited scar formation based on evaluation of photographs and patient feedback. There was no mark at the biopsy site 7 days post-procedure. Optical coherence tomography showed a complete closing of the biopsy-punch wound 48 hours post-biopsy. One month post-biopsy, photography reviewers were unable to identify a scar, on average, 90% of the time at 3-month follow-up. Microbiopsies from various anatomical regions were successfully extracted for histology, electron microscopy, and gene expression analysis. Selected skin rejuvenation markers in the biopsies from Erbium-YAG-treated forearm skin resulted in significant gene upregulation in extracellular matrix molecules at 1 month posttreatment compared with untreated skin. CONCLUSIONS: A core microbiopsy of 0.33 mm can be extracted reproducibly for histological, ultrastructural, and gene expression analysis without scarring. This allows repeated sampling for assessment of skin treatments and diseases, including aesthetics and wound-healing progress.


Subject(s)
Laser Therapy , Skin , Cicatrix , Humans , Nasolabial Fold/pathology , Prospective Studies , Skin/pathology , Wound Healing
2.
Am J Physiol Lung Cell Mol Physiol ; 307(7): L566-75, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25063799

ABSTRACT

α-Klotho exerts pleiotropic biological actions. Heterozygous α-Klotho haplo-insufficient mice (kl/+) appear normal at baseline except for age-related changes in the lung, suggesting heightened pulmonary susceptibility to α-Klotho deficiency. We used in vivo and in vitro models to test whether α-Klotho protects lung epithelia against injury. Normally, α-Klotho is not expressed in the lung, but circulating α-Klotho levels are reduced -40% in kl/+ mice and undetectable in homozygous α-Klotho-deficient mice (kl/kl). kl/+ mice show distal air space enlargement at a given airway pressure, with elevated lung oxidative damage marker (8-hydroxydeoxyguanosine; 8-OHdG); these abnormalities are exacerbated in kl/kl mice. Studies were performed in A549 lung epithelial cells and/or primary culture of alveolar epithelial cells. Hyperoxia (95% O2) and high inorganic phosphate concentrations (Pi, 3-5 mM) additively caused cell injury (lactate dehydrogenase release), oxidative DNA damage (8-OHdG), lipid oxidation (8-isoprostane), protein oxidation (carbonyl), and apoptosis (caspase-8 activity and TUNEL stain). Transfection of transmembrane or soluble α-Klotho, or addition of soluble α-Klotho-containing conditioned media, increased cellular antioxidant capacity (Cu- and Fe-based assays) via increased nuclear factor erythroid-derived 2-related factors 1 and 2 (Nrf1/2) transcriptional activity and ameliorated hyperoxic and phosphotoxic injury. To validate the findings in vivo, we injected α-Klotho-containing conditioned media into rat peritoneum before and during hyperoxia exposure and found reduced alveolar interstitial edema and oxidative damage. We conclude that circulating α-Klotho protects the lung against oxidative damage and apoptosis partly via increasing endogenous antioxidative capacity in pulmonary epithelia. Cytoprotection by α-Klotho may play an important role in degenerative diseases of the lung.


Subject(s)
Glucuronidase/physiology , Oxidative Stress , Respiratory Mucosa/metabolism , Animals , Antioxidant Response Elements , Apoptosis , Cell Line, Tumor , DNA Damage , Gene Expression , Gene Expression Regulation , Humans , Klotho Proteins , Male , Mice , Mice, 129 Strain , Mice, Transgenic , Oxidation-Reduction , Oxygen/metabolism , Protein Carbonylation , Rats , Rats, Sprague-Dawley , Respiratory Mucosa/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...