Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Evol Biol ; 17(1): 37, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28125957

ABSTRACT

BACKGROUND: Measuring the evolutionary rate of reproductive isolation is essential to understanding how new species form. Tempo calculations typically rely on fossil records, geological events, and molecular evolution analyses. The speed at which genetically-based hybrid mortality arises, or the "incompatibility clock", is estimated to be millions of years in various diploid organisms and is poorly understood in general. Owing to these extended timeframes, seldom do biologists observe the evolution of hybrid mortality in real time. RESULTS: Here we report the very recent spread and fixation of complete asymmetric F1 hybrid mortality within eight years of laboratory maintenance in the insect model Nasonia. The asymmetric interspecific hybrid mortality evolved in an isogenic stock line of N. longicornis and occurs in crosses to N. vitripennis males. The resulting diploid hybrids exhibit complete failure in dorsal closure during embryogenesis. CONCLUSION: These results comprise a unique case whereby a strong asymmetrical isolation barrier evolved in real time. The spread of this reproductive isolation barrier notably occurred in a small laboratory stock subject to recurrent bottlenecks.


Subject(s)
Hybridization, Genetic , Reproductive Isolation , Wasps/genetics , Animals , Biological Evolution , Female , Male
2.
J Bacteriol ; 197(7): 1236-48, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25622617

ABSTRACT

UNLABELLED: The blp locus of Streptococcus pneumoniae secretes and regulates bacteriocins, which mediate both intra- and interspecific competition in the human nasopharynx. There are four major alleles of the gene blpH, which encodes the receptor responsible for activating the blp locus when bound to one of four distinct peptide pheromones (BlpC). The allelic variation of blpH is presumably explained by a need to restrict cross talk between competing strains. The BlpH protein sequences have polymorphisms distributed throughout the sequence, making identification of the peptide binding site difficult to predict. To identify the pheromone binding sites that dictate pheromone specificity, we have characterized the four major variants and two naturally occurring chimeric versions of blpH in which recombination events appear to have joined two distinct blpH alleles together. Using these allelic variants, a series of laboratory-generated chimeric blpH alleles, and site-directed mutants of both the receptor and peptide, we have demonstrated that BlpC binding to some BlpH types involves an electrostatic interaction between the oppositely charged residues of BlpC and the first transmembrane domain of BlpH. An additional recognition site was identified in the second extracellular loop. We identified naturally occurring BlpH types that have the capacity to respond to more than one BlpC type; however, this change in specificity results in a commensurate drop in overall sensitivity. These natural recombination events were presumably selected for to balance the need to sense bacteriocin-secreting neighbors with the need to turn on bacteriocin production at a low density. IMPORTANCE: Bacteria use quorum sensing to optimize gene expression to accommodate for local bacterial density and diffusion rates. To prevent interception of quorum-sensing signals by neighboring strains, the genomes of single species often encode strain-specific signal/receptor pairs. The blp locus in Streptococcus pneumoniae that drives bacteriocin secretion is controlled by quorum sensing that involves the interaction of the signal/receptor pair BlpC/BlpH. We show that the pneumococcal population can be divided into several distinct BlpC/BlpH pairs; however, there are examples of naturally occurring chimeric receptors that can bind to more than one BlpC type. The trade-off for this broadened specificity is a loss of overall receptor sensitivity. This suggests that under certain conditions, the advantage of signal interception can trump the requirements for self-induction.


Subject(s)
Bacterial Proteins/metabolism , Bacteriocins/metabolism , Gene Expression Regulation, Bacterial/physiology , Pheromones/metabolism , Static Electricity , Streptococcus pneumoniae/metabolism , Alleles , Bacterial Proteins/genetics , Bacteriocins/genetics , Electrochemistry , Genetic Variation , Genome, Bacterial , Quorum Sensing , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...