Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Soft Matter ; 19(41): 7907-7911, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37823228

ABSTRACT

We present a scaling view of underscreening observed in salt solutions in the range of concentrations greater than about 1 M, in which the screening length increases with concentration. The system consists of hydrated clusters of positive and negative ions with a single unpaired ion as suggested by recent simulations. The environment of this ion is more hydrated than average which leads to a self-similar situation in which the size of this environment scales with the screening length. The prefactor involves the local dielectric constant and the cluster density. The scaling arguments as well as the cluster model lead to scaling of the screening length with the ion concentration, in agreement with observations.

2.
Phys Rev E ; 104(1-1): 014504, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34412211

ABSTRACT

The conformations of biological polyelectrolytes (PEs), such as polysaccharides, proteins, and nucleic acids, affect how they behave and interact with other biomolecules. Relative to neutral polymers, PEs in solution are more locally rigid due to intrachain electrostatic repulsion, the magnitude of which depends on the concentration of added salt. This is typically quantified using the Odijk-Skolnick-Fixman (OSF) electrostatic-stiffening model, in which salt-dependent Debye-Hückel (DH) screening modulates intrachain repulsion. However, the applicability of this approach to flexible PEs has long been questioned. To investigate this, we use high-precision single-molecule elasticity measurements to infer the scaling with salt of the local stiffness of three flexible biopolymers (hyaluronic acid, single-stranded RNA, and single-stranded DNA) in both monovalent and mixed-valence salt solutions. In monovalent salt, we collapse the data across all three polymers by accounting for charge spacing, and find a common power-law scaling of the electrostatic persistence length with ionic strength with an exponent of 0.66±0.02. This result rules out simple OSF pictures of electrostatic stiffening. It is roughly compatible with a modified OSF picture developed by Netz and Orland; alternatively, we posit the exponent can be explained if the relevant electrostatic screening length is the interion spacing rather than the DH length. In mixed salt solutions, we find a regime where adding monovalent salt, in the presence of multivalent salt, does not affect PE stiffness. Using coarse-grained simulations, and a three-state model of condensed, chain-proximate, and bulk ions, we attribute this regime to a "jacket" of ions surrounding the PE that regulates the chain's effective charge density as ionic strength varies. The size of this jacket in simulations is again consistent with a screening length controlled by interion spacing rather than the DH length. Taken together, our results describe a unified picture of the electrostatic stiffness of polyelectrolytes in the mixed-valence salt conditions of direct relevance to cellular and intercellular biological systems.

3.
Phys Rev Lett ; 123(18): 187801, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31763890

ABSTRACT

The configuration of charged polymers is heavily dependent on interactions with surrounding salt ions, typically manifesting as a sensitivity to the bulk ionic strength. Here, we use single-molecule mechanical measurements to show that a charged polysaccharide, hyaluronic acid, shows a surprising regime of insensitivity to ionic strength in the presence of trivalent ions. Using simulations and theory, we propose that this is caused by the formation of a "jacket" of ions, tightly associated with the polymer, whose charge (and thus effect on configuration) is robust against changes in solution composition.

4.
Nano Lett ; 19(8): 5667-5673, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31260626

ABSTRACT

When compressed in a slit of width D, a Θ-chain that displays the scaling of size R0 (diameter) with respect to the number of monomers N, R0 ∼ aN1/2, expands in the lateral direction as R|| ∼ aNν(a/D)2ν-1. Provided that the Θ condition is strictly maintained throughout the compression, the well-known scaling exponent of Θ-chain in two dimensions, ν = 4/7, is anticipated in a perfect confinement. However, numerics shows that upon increasing compression from R0/D < 1 to R0/D ≫ 1, ν gradually deviates from ν = 1/2 and plateaus at ν = 3/4, the exponent associated with the self-avoiding walk in two dimensions. Using both theoretical considerations and numerics, we argue that it is highly nontrivial to maintain the Θ condition under confinement because of two major effects. First, as the dimension is reduced from three to two dimensions, the contributions of higher order virial terms, which can be ignored in three dimensions at large N, become significant, making the perturbative expansion used in Flory-type approach inherently problematic. Second and more importantly, the geometrical confinement, which is regarded as an applied external field, alters the second virial coefficient (B2) changes from B2 = 0 (Θ condition) in free space to B2 > 0 (good-solvent condition) in confinement. Our study provides practical insight into how confinement affects the conformation of a single polymer chain.

5.
Nat Commun ; 10(1): 2080, 2019 May 02.
Article in English | MEDLINE | ID: mdl-31048688

ABSTRACT

The original version of this Article contained an error throughout in which an incorrect symbol was used for the diffusion coefficient: it should be cambria math, italicized, and not bold. These have been corrected in both the PDF and HTML versions of the Article.

6.
Nat Commun ; 9(1): 4203, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30310065

ABSTRACT

Meso-porous electrodes (pore width « 1 µm) are a central component in electrochemical energy storage devices and related technologies, based on the capacitive nature of electric double-layers at their surfaces. This requires that such charging, limited by ion transport within the pores, is attained over the device operation time. Here we measure directly electric double layer charging within individual nano-slits, formed between gold and mica surfaces in a surface force balance, by monitoring transient surface forces in response to an applied electric potential. We find that the nano-slit charging time is of order 1 s (far slower than the time of order 3 × 10-2 s characteristic of charging an unconfined surface in our configuration), increasing at smaller slit thickness, and decreasing with solution ion concentration. The results enable us to examine critically the nanopore charging dynamics, and indicate how to probe such charging in different conditions and aqueous environments.

7.
J Phys Chem B ; 121(28): 6958-6968, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28636369

ABSTRACT

Structure-property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this article, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic-hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species and the neutral monomers. The favorable hydrophobic-hydrophobic interactions and the unfavorable hydrophobic-hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.

8.
Biophys J ; 111(11): 2481-2491, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27926849

ABSTRACT

Despite much effort to probe the properties of dimethyl sulfoxide (DMSO) solution, the effects of DMSO on water, especially near plasma membrane surfaces, still remain elusive. By performing molecular dynamics simulations at varying DMSO concentrations (XDMSO), we study how DMSO affects structural and dynamical properties of water in the vicinity of phospholipid bilayers. As proposed by a number of experiments, our simulations confirm that DMSO induces dehydration from bilayer surfaces and disrupts the H-bond structure of water. However, DMSO-enhanced water diffusivity at solvent-bilayer interfaces, an intriguing discovery reported by a spin-label measurement, is not confirmed in our simulations. To resolve this discrepancy, we examine the location of the spin label (Tempo) relative to the solvent-bilayer interface. In accord with the evidence in the literature, our simulations, which explicitly model Tempo-phosphatidylcholine, find that the Tempo moiety is equilibrated at ∼8-10 Å below the bilayer surface. Furthermore, the DMSO-enhanced surface-water diffusion is confirmed only when water diffusion is analyzed around the Tempo moiety that is immersed below the bilayer surface, which implies that the experimentally detected signal of water using Tempo stems from the interior of bilayers, not from the interface. Our analysis finds that the increase of water diffusion below the bilayer surface is coupled to the increase of area per lipid with an increasing XDMSO(≲10mol%). Underscoring the hydrophobic nature of the Tempo moiety, our study calls for careful re-evaluation of the use of Tempo in measurements on lipid bilayer surfaces.


Subject(s)
Dimethyl Sulfoxide/pharmacology , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Phospholipids/chemistry , Water/chemistry , Water/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Diffusion , Dose-Response Relationship, Drug , Molecular Conformation , Molecular Dynamics Simulation , Surface Properties
9.
Phys Rev Lett ; 114(6): 068303, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25723249

ABSTRACT

Experiments show that macromolecular crowding modestly reduces the size of intrinsically disordered proteins even at a volume fraction (ϕ) similar to that in the cytosol, whereas DNA undergoes a coil-to-globule transition at very small ϕ. We show using a combination of scaling arguments and simulations that the polymer size R̅(g)(ϕ) depends on x=R̅(g)(0)/D, where D is the ϕ-dependent distance between the crowders. If x≲O(1), there is only a small decrease in R̅(g)(ϕ) as ϕ increases. When x≫O(1), a cooperative coil-to-globule transition is induced. Our theory quantitatively explains a number of experiments.


Subject(s)
DNA/chemistry , Macromolecular Substances/chemistry , Models, Chemical , Proteins/chemistry , Computer Simulation , Nucleic Acid Conformation , Protein Conformation
10.
J Am Chem Soc ; 136(6): 2642-9, 2014 Feb 12.
Article in English | MEDLINE | ID: mdl-24456096

ABSTRACT

Effects of specific ions on the local translational diffusion of water near large hydrophilic lipid vesicle surfaces were measured by Overhauser dynamic nuclear polarization (ODNP). ODNP relies on an unpaired electron spin-containing probe located at molecular or surface sites to report on the dynamics of water protons within ~10 Å from the spin probe, which give rise to spectral densities for electron-proton cross-relaxation processes in the 10 GHz regime. This pushes nuclear magnetic resonance relaxometry to more than an order of magnitude higher frequencies than conventionally feasible, permitting the measurement of water moving with picosecond to subnanosecond correlation times. Diffusion of water within ~10 Å of, i.e., up to ~3 water layers around the spin probes located on hydrophilic lipid vesicle surfaces is ~5 times retarded compared to the bulk water translational diffusion. This directly reflects on the activation barrier for surface water diffusion, i.e., how tightly water is bound to the hydrophilic surface and surrounding waters. We find this value to be modulated by the presence of specific ions in solution, with its order following the known Hofmeister series. While a molecular description of how ions affect the hydration structure at the hydrophilic surface remains to be answered, the finding that Hofmeister ions directly modulate the surface water diffusivity implies that the strength of the hydrogen bond network of surface hydration water is directly modulated on hydrophilic surfaces.


Subject(s)
Membrane Lipids/chemistry , Water/chemistry , Diffusion , Ions , Models, Molecular , Surface Properties , Transport Vesicles/chemistry
11.
PLoS One ; 8(8): e69436, 2013.
Article in English | MEDLINE | ID: mdl-23940518

ABSTRACT

The repulsive interaction between oppositely charged macroions is investigated using Grand Canonical Monte Carlo simulations of an unrestricted primitive model, including the effect of inhomogeneous surface charge and its density, the depth of surface charge, the cation size, and the dielectric permittivity of solvent and macroions, and their contrast. The origin of the repulsion is a combination of osmotic pressure and ionic screening resulting from excess salt between the macroions. The excess charge over-reduces the electrostatic attraction between macroions and raises the entropic repulsion. The magnitude of the repulsion increases when the dielectric constant of the solvent is lowered (below that of water) and/or the surface charge density is increased, in good agreement with experiment. Smaller size of surface charge and the cation, their discreteness and mobility are other factors that enhance the repulsion and charge inversion phenomenons.


Subject(s)
Ions/chemistry , Cations/chemistry , Models, Chemical , Monte Carlo Method , Osmotic Pressure
12.
Proc Natl Acad Sci U S A ; 110(12): 4534-8, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23471983

ABSTRACT

Cell-free gene expression in localized DNA brushes on a biochip has been shown to depend on gene density and orientation, suggesting that brushes form compartments with partitioned conditions. At high density, the interplay of DNA entropic elasticity, electrostatics, and excluded volume interactions leads to collective conformations that affect the function of DNA-associated proteins. Hence, measuring the collective interactions in dense DNA, free of proteins, is essential for understanding crowded cellular environments and for the design of cell-free synthetic biochips. Here, we assembled dense DNA polymer brushes on a biochip along a density gradient and directly measured the collective extension of DNA using evanescent fluorescence. DNA of 1 kbp in a brush undergoes major conformational changes, from a relaxed random coil to a stretched configuration, following a universal function of density to ionic strength ratio with scaling exponent of 1/3. DNA extends because of the swelling force induced by the osmotic pressure of ions, which are trapped in the brush to maintain local charge neutrality, in competition with the restoring force of DNA entropic elasticity. The measurements reveal in DNA crossover between regimes of osmotic, salted, mushroom, and quasineutral brush. It is surprising to note that, at physiological ionic strength, DNA density does not induce collective stretch despite significant chain overlap, which implies that excluded volume interactions in DNA are weak.


Subject(s)
DNA, Circular/chemistry , Models, Chemical , Oligonucleotide Array Sequence Analysis , Cell-Free System , Elasticity , Entropy , Gene Expression , Protein Biosynthesis
13.
Langmuir ; 26(24): 18595-9, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21082794

ABSTRACT

We present persistence length measurements on neurofilaments (NFs), an intermediate filament with protruding side arms, of the neuronal cytoskeleton. Tapping mode atomic force microscopy enabled us to visualize and trace at subpixel resolution photoimmobilized NFs, assembled at various subunit protein ratios, thereby modifying the side-arm length and chain density charge distribution. We show that specific polyampholyte sequences of the side arms can form salt-switchable intrafilament attractions that compete with the net electrostatic and steric repulsion and can reduce the total persistence length by half. The results are in agreement with present X-ray and microscopy data yet present a theoretical challenge for polyampholyte interchain interactions.


Subject(s)
Biopolymers/metabolism , Intermediate Filaments/drug effects , Intermediate Filaments/metabolism , Salts/pharmacology , Animals , Biomechanical Phenomena , Biopolymers/chemistry , Cattle , Microscopy, Atomic Force , Models, Molecular , Molecular Conformation
14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 1): 011401, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20866614

ABSTRACT

In this paper we discuss the stability behavior of spherical polyelectrolyte brushes (SPB) in the presence of trivalent lanthanum counterions. Stability behavior is measured through the rate of coagulation of the SPB as a function of the lanthanum concentration using simultaneous static and dynamic light scattering. As the counterion concentration increases, we observe coagulation of the SPB which in turn leads to a dramatic decrease in the stability of our particles. Since the rate of coagulation is dependent upon the balance between the repulsive interactions and the thermal energy of the diffusing particles (reaction-limited colloidal aggregation; RLCA), we then can relate the measured particle stability to the value of the repulsive potential in the RLCA regime. These "microsurface potential measurements" (MSPM) allow us to measure repulsive energies down to the order of k(B)T. From the repulsive energy of the particles we can then determine precise information about the net surface potential Ψ0 of the SPB as a function of the lanthanum counterion concentration. Moreover, we demonstrate that a simple mean-field model predicts the stability of the SPB in the presence of lanthanum counterions with high accuracy.

15.
Phys Rev Lett ; 105(3): 038101, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20867811

ABSTRACT

The thermal fluctuation and elasticity of dioleoyl-phosphocholine large unilamellar vesicle interacting with pore-forming peptide, melittin, were investigated by neutron spin-echo measurements. The relaxation behavior of the membrane fluctuation with different peptide to lipid molar ratio P/L can be divided into three regions, resulting from characteristic changes of the effective bending modulus κ(˜) of the membrane which includes the effects of internal dissipation within the membrane. At low P/L, melittin is adsorbed parallel to the surface of membrane and κ(˜) decreases significantly due to perturbation of hydrocarbon chain packing. At a critical P/L, melittin forms pores in the membrane and κ(˜) starts to increase slightly due to high pore rigidity. At higher P/L where the repulsive interpore interaction becomes significant, κ(˜) increases rapidly.


Subject(s)
Lipid Bilayers/chemistry , Peptides/chemistry , Phosphatidylcholines/chemistry , Unilamellar Liposomes/chemistry , Elasticity , Lipid Bilayers/metabolism , Membrane Fluidity/physiology , Peptides/metabolism , Phosphatidylcholines/metabolism , Porosity , Scattering, Radiation , Time Factors , Unilamellar Liposomes/metabolism
16.
J Phys Chem B ; 113(12): 3593-4, 2009 Mar 26.
Article in English | MEDLINE | ID: mdl-19296698
17.
Langmuir ; 24(19): 10612-5, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18781780

ABSTRACT

We propose a new way to determine weak repulsive forces operative between colloidal particles by measuring the rate of slow coagulation. The rate of slow coagulation is directly related to the competition of the repulsion with thermal motion. Since the thermal forces are weak, measurements of the coagulation rate can lead to precise information on repulsive potentials having a magnitude of just a few kT. We demonstrate this novel way by studying colloidal spherical polyelectrolyte brush (SPB) particles in aqueous solution containing trivalent La3+ counterions. The particles consist of a monodisperse polystyrene core of 121 nm radius from which linear sodium poly(styrenesulfonate) (PSS) chains are densely grafted (contour length 48 nm). We determine the rate of coagulation by time-resolved simultaneous static and dynamic light scattering in the presence of LaCl3 (0.2 to 150 mM). Direct measurements of the repulsive force between macroscopic brush layers demonstrate that the potential is decaying exponentially with distance. This is in good agreement with a simple theoretical treatment that furthermore leads to the effective surface potential Psi0. The good agreement of data obtained by the novel microscopic method with direct macroscopic measurements underscores the general validity of our approach.

18.
Phys Rev Lett ; 98(1): 018101, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17358507

ABSTRACT

A photo-immobilization based process is presented for direct imaging of hierarchical assemblies of biopolymers using atomic force microscopy (AFM). The technique was used to investigate the phase behavior of F-actin aggregates as a function of concentration of the divalent cation Mg2+. The data provided direct experimental evidence of a coil-on-coil (braided) structure of F-actin bundles formed at high Mg2+ concentrations. At intermediate Mg2+ concentrations, the data showed the first images of the two-dimensional nematic rafts discovered by recent x-ray studies and theoretical treatments.


Subject(s)
Actin Cytoskeleton/chemistry , Actins/chemistry , Biophysics/methods , Light , Polymers/chemistry , Animals , Cations , Magnesium/chemistry , Microscopy, Atomic Force/methods , Muscle, Skeletal/metabolism , Rabbits , Surface Properties , X-Ray Diffraction , X-Rays
19.
Phys Rev Lett ; 96(1): 018102, 2006 Jan 13.
Article in English | MEDLINE | ID: mdl-16486522

ABSTRACT

We report on a molecular simulation method, which captures the self-assembly of cationic lipid-DNA (CL-DNA) gene delivery complexes. Computational efficiency required for large length- and time-scale simulations is achieved through a coarse-grained representation of the intramolecular details and via intermolecular potentials, which effectively mimic the hydrophobic effect without an explicit solvent. The broad utility of the model is illustrated by demonstrating excellent agreement with x-ray diffraction experimental data for the dependence of the spacing between DNA chains on the concentration of CLs. At high concentrations, the large electrostatic pressure induces the formation of pores in the membranes through which the DNA molecules may escape the complex. We relate this observation to the origin of recently observed enhanced transfection efficiency of lamellar CL-DNA complexes at high charge densities.


Subject(s)
DNA/administration & dosage , Gene Transfer Techniques , Genetic Therapy/methods , Lipids/administration & dosage , Computer Simulation , DNA/chemistry , Lipid Bilayers/chemistry , Lipids/chemistry
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(6 Pt 1): 060801, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16089714

ABSTRACT

Multivalent counterions can induce an effective attraction between like-charged rodlike polyelectrolytes, leading to the formation of polyelectrolyte bundles. In this paper, we calculate the equilibrium bundle size using a simple model in which the attraction between polyelectrolytes (assumed to be pairwise additive) is treated phenomenologically. If the counterions are pointlike, they almost completely neutralize the charge of the bundle, and the equilibrium bundle size diverges. When the counterions are large, however, steric and short-range electrostatic interactions prevent charge neutralization of the bundle, thus forcing the equilibrium bundle size to be finite. We also show that if the attractive interactions between the rods become frustrated as the bundle grows, finite-size bundles can be obtained with pointlike counterions.

SELECTION OF CITATIONS
SEARCH DETAIL
...