Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 73(2): 212-223.e7, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30554942

ABSTRACT

Cohesin subunits are frequently mutated in cancer, but how they function as tumor suppressors is unknown. Cohesin mediates sister chromatid cohesion, but this is not always perturbed in cancer cells. Here, we identify a previously unknown role for cohesin. We find that cohesin is required to repress transcription at DNA double-strand breaks (DSBs). Notably, cohesin represses transcription at DSBs throughout interphase, indicating that this is distinct from its known role in mediating DNA repair through sister chromatid cohesion. We identified a cancer-associated SA2 mutation that supports sister chromatid cohesion but is unable to repress transcription at DSBs. We further show that failure to repress transcription at DSBs leads to large-scale genome rearrangements. Cancer samples lacking SA2 display mutational patterns consistent with loss of this pathway. These findings uncover a new function for cohesin that provides insights into its frequent loss in cancer.


Subject(s)
Bone Neoplasms/genetics , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Breaks, Double-Stranded , Genomic Instability , Interphase , Osteosarcoma/genetics , Transcription, Genetic , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , DNA Repair , Down-Regulation , G1 Phase , G2 Phase , Gene Expression Regulation, Neoplastic , Humans , Osteosarcoma/metabolism , Osteosarcoma/pathology , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Cohesins
2.
DNA Repair (Amst) ; 28: 14-20, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25703834

ABSTRACT

In both pro- and eukaryotes, the mutagenic and toxic DNA adduct O(6)-methylguanine (O(6)MeG) is subject to repair by alkyltransferase proteins via methyl group transfer. In addition, in prokaryotes, there are proteins with sequence homology to alkyltransferases, collectively designated as alkyltransferase-like (ATL) proteins, which bind to O(6)-alkylguanine adducts and mediate resistance to alkylating agents. Whether such proteins might enable similar protection in higher eukaryotes is unknown. Here we expressed the ATL protein of Escherichia coli (eATL) in mammalian cells and addressed the question whether it is able to protect them against the cytotoxic effects of alkylating agents. The Chinese hamster cell line CHO-9, the nucleotide excision repair (NER) deficient derivative 43-3B and the DNA mismatch repair (MMR) impaired derivative Tk22-C1 were transfected with eATL cloned in an expression plasmid and the sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was determined in reproductive survival, DNA double-strand break (DSB) and apoptosis assays. The results indicate that eATL expression is tolerated in mammalian cells and conferes protection against killing by MNNG in both wild-type and 43-3B cells, but not in the MMR-impaired cell line. The protection effect was dependent on the expression level of eATL and was completely ablated in cells co-expressing the human O(6)-methylguanine-DNA methyltransferase (MGMT). eATL did not protect against cytotoxicity induced by the chloroethylating agent lomustine, suggesting that O(6)-chloroethylguanine adducts are not target of eATL. To investigate the mechanism of protection, we determined O(6)MeG levels in DNA after MNNG treatment and found that eATL did not cause removal of the adduct. However, eATL expression resulted in a significantly lower level of DSBs in MNNG-treated cells, and this was concomitant with attenuation of G2 blockage and a lower level of apoptosis. The results suggest that eATL confers protection against methylating agents by masking O(6)MeG/thymine mispaired adducts, preventing them from becoming a substrate for mismatch repair-mediated DSB formation and cell death.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Alkylating Agents/toxicity , DNA Adducts/metabolism , Escherichia coli Proteins/metabolism , Guanine/analogs & derivatives , Alkyl and Aryl Transferases/genetics , Animals , Apoptosis , CHO Cells , Cricetinae , Cricetulus , DNA/drug effects , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Modification Methylases/metabolism , DNA Repair , DNA Repair Enzymes/metabolism , Escherichia coli Proteins/genetics , Guanine/metabolism , Humans , Methylnitronitrosoguanidine/toxicity , Transgenes , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...