Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39046457

ABSTRACT

Short association fibres (SAF) are the most abundant fibre pathways in the human white matter. Until recently, SAF could not be mapped comprehensively in vivo because diffusion weighted magnetic resonance imaging with sufficiently high spatial resolution needed to map these thin and short pathways was not possible. Recent developments in acquisition hardware and sequences allowed us to create a dedicated in vivo method for mapping the SAF based on sub-millimetre spatial resolution diffusion weighted tractography, which we validated in the human primary (V1) and secondary (V2) visual cortex against the expected SAF retinotopic order. Here, we extended our original study to assess the feasibility of the method to map SAF in higher cortical areas by including SAF up to V3. Our results reproduced the expected retinotopic order of SAF in the V2-V3 and V1-V3 stream, demonstrating greater robustness to the shorter V1-V2 and V2-V3 than the longer V1-V3 connections. The demonstrated ability of the method to map higher-order SAF connectivity patterns in vivo is an important step towards its application across the brain.


Subject(s)
Brain Mapping , Diffusion Tensor Imaging , Visual Cortex , Visual Pathways , Humans , Visual Cortex/physiology , Visual Cortex/diagnostic imaging , Male , Female , Adult , Diffusion Tensor Imaging/methods , Brain Mapping/methods , Visual Pathways/physiology , Visual Pathways/diagnostic imaging , White Matter/diagnostic imaging , White Matter/physiology , Young Adult , Image Processing, Computer-Assisted/methods
2.
Magn Reson Med ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38817204

ABSTRACT

PURPOSE: To compare MR axon radius estimation in human white matter using a multiband spiral sequence combined with field monitoring to the current state-of-the-art echo-planar imaging (EPI)-based approach. METHODS: A custom multiband spiral sequence was used for diffusion-weighted imaging at ultra-high b $$ b $$ -values. Field monitoring and higher order image reconstruction were employed to greatly reduce artifacts in spiral images. Diffusion weighting parameters were chosen to match a state-of-the art EPI-based axon radius mapping protocol. The spiral approach was compared to the EPI approach by comparing the image signal-to-noise ratio (SNR) and performing a test-retest study to assess the respective variability and repeatability of axon radius mapping. Effective axon radius estimates were compared over white matter voxels and along the left corticospinal tract. RESULTS: Increased SNR and reduced artifacts in spiral images led to reduced variability in resulting axon radius maps, especially in low-SNR regions. Test-retest variability was reduced by a factor of approximately 1.5 using the spiral approach. Reduced repeatability due to significant bias was found for some subjects in both spiral and EPI approaches, and attributed to scanner instability, pointing to a previously unknown limitation of the state-of-the-art approach. CONCLUSION: Combining spiral readouts with field monitoring improved mapping of the effective axon radius compared to the conventional EPI approach.

3.
Front Neurosci ; 17: 1133086, 2023.
Article in English | MEDLINE | ID: mdl-37694109

ABSTRACT

The effective transverse relaxation rate (R2*) is sensitive to the microstructure of the human brain like the g-ratio which characterises the relative myelination of axons. However, the fibre-orientation dependence of R2* degrades its reproducibility and any microstructural derivative measure. To estimate its orientation-independent part (R2,iso*) from single multi-echo gradient-recalled-echo (meGRE) measurements at arbitrary orientations, a second-order polynomial in time model (hereafter M2) can be used. Its linear time-dependent parameter, ß1, can be biophysically related to R2,iso* when neglecting the myelin water (MW) signal in the hollow cylinder fibre model (HCFM). Here, we examined the performance of M2 using experimental and simulated data with variable g-ratio and fibre dispersion. We found that the fitted ß1 can estimate R2,iso* using meGRE with long maximum-echo time (TEmax ≈ 54 ms), but not accurately captures its microscopic dependence on the g-ratio (error 84%). We proposed a new heuristic expression for ß1 that reduced the error to 12% for ex vivo compartmental R2 values. Using the new expression, we could estimate an MW fraction of 0.14 for fibres with negligible dispersion in a fixed human optic chiasm for the ex vivo compartmental R2 values but not for the in vivo values. M2 and the HCFM-based simulations failed to explain the measured R2*-orientation-dependence around the magic angle for a typical in vivo meGRE protocol (with TEmax ≈ 18 ms). In conclusion, further validation and the development of movement-robust in vivo meGRE protocols with TEmax ≈ 54 ms are required before M2 can be used to estimate R2,iso* in subjects.

4.
Elife ; 122023 03 08.
Article in English | MEDLINE | ID: mdl-36888685

ABSTRACT

The characterization of cortical myelination is essential for the study of structure-function relationships in the human brain. However, knowledge about cortical myelination is largely based on post-mortem histology, which generally renders direct comparison to function impossible. The repeating pattern of pale-thin-pale-thick stripes of cytochrome oxidase (CO) activity in the primate secondary visual cortex (V2) is a prominent columnar system, in which histology also indicates different myelination of thin/thick versus pale stripes. We used quantitative magnetic resonance imaging (qMRI) in conjunction with functional magnetic resonance imaging (fMRI) at ultra-high field strength (7 T) to localize and study myelination of stripes in four human participants at sub-millimeter resolution in vivo. Thin and thick stripes were functionally localized by exploiting their sensitivity to color and binocular disparity, respectively. Resulting functional activation maps showed robust stripe patterns in V2 which enabled further comparison of quantitative relaxation parameters between stripe types. Thereby, we found lower longitudinal relaxation rates (R1) of thin and thick stripes compared to surrounding gray matter in the order of 1-2%, indicating higher myelination of pale stripes. No consistent differences were found for effective transverse relaxation rates (R2*). The study demonstrates the feasibility to investigate structure-function relationships in living humans within one cortical area at the level of columnar systems using qMRI.


Subject(s)
Electron Transport Complex IV , Visual Cortex , Animals , Humans , Electron Transport Complex IV/metabolism , Brain Mapping , Visual Cortex/physiology , Vision Disparity , Magnetic Resonance Imaging
5.
Magn Reson Med ; 89(4): 1385-1400, 2023 04.
Article in English | MEDLINE | ID: mdl-36373175

ABSTRACT

PURPOSE: Magnetization transfer saturation ( MTsat $$ \mathrm{MTsat} $$ ) is a useful marker to probe tissue macromolecular content and myelination in the brain. The increased B 1 + $$ {B}_1^{+} $$ -inhomogeneity at ≥ 7 $$ \ge 7 $$ T and significantly larger saturation pulse flip angles which are often used for postmortem studies exceed the limits where previous MTsat $$ \mathrm{MTsat} $$ B 1 + $$ {B}_1^{+} $$ correction methods are applicable. Here, we develop a calibration-based correction model and procedure, and validate and evaluate it in postmortem 7T data of whole chimpanzee brains. THEORY: The B 1 + $$ {B}_1^{+} $$ dependence of MTsat $$ \mathrm{MTsat} $$ was investigated by varying the off-resonance saturation pulse flip angle. For the range of saturation pulse flip angles applied in typical experiments on postmortem tissue, the dependence was close to linear. A linear model with a single calibration constant C $$ C $$ is proposed to correct bias in MTsat $$ \mathrm{MTsat} $$ by mapping it to the reference value of the saturation pulse flip angle. METHODS: C $$ C $$ was estimated voxel-wise in five postmortem chimpanzee brains. "Individual-based global parameters" were obtained by calculating the mean C $$ C $$ within individual specimen brains and "group-based global parameters" by calculating the means of the individual-based global parameters across the five brains. RESULTS: The linear calibration model described the data well, though C $$ C $$ was not entirely independent of the underlying tissue and B 1 + $$ {B}_1^{+} $$ . Individual-based correction parameters and a group-based global correction parameter ( C = 1 . 2 $$ C=1.2 $$ ) led to visible, quantifiable reductions of B 1 + $$ {B}_1^{+} $$ -biases in high-resolution MTsat $$ \mathrm{MTsat} $$ maps. CONCLUSION: The presented model and calibration approach effectively corrects for B 1 + $$ {B}_1^{+} $$ inhomogeneities in postmortem 7T data.


Subject(s)
Brain , Pan troglodytes , Animals , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Calibration
6.
Cereb Cortex ; 33(9): 5704-5716, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36520483

ABSTRACT

Quantitative magnetic resonance imaging (qMRI) allows extraction of reproducible and robust parameter maps. However, the connection to underlying biological substrates remains murky, especially in the complex, densely packed cortex. We investigated associations in human neocortex between qMRI parameters and neocortical cell types by comparing the spatial distribution of the qMRI parameters longitudinal relaxation rate (${R_{1}}$), effective transverse relaxation rate (${R_{2}}^{\ast }$), and magnetization transfer saturation (MTsat) to gene expression from the Allen Human Brain Atlas, then combining this with lists of genes enriched in specific cell types found in the human brain. As qMRI parameters are magnetic field strength-dependent, the analysis was performed on MRI data at 3T and 7T. All qMRI parameters significantly covaried with genes enriched in GABA- and glutamatergic neurons, i.e. they were associated with cytoarchitecture. The qMRI parameters also significantly covaried with the distribution of genes enriched in astrocytes (${R_{2}}^{\ast }$ at 3T, ${R_{1}}$ at 7T), endothelial cells (${R_{1}}$ and MTsat at 3T), microglia (${R_{1}}$ and MTsat at 3T, ${R_{1}}$ at 7T), and oligodendrocytes and oligodendrocyte precursor cells (${R_{1}}$ at 7T). These results advance the potential use of qMRI parameters as biomarkers for specific cell types.


Subject(s)
Neocortex , Humans , Endothelial Cells , Magnetic Resonance Imaging/methods , Brain/pathology , Brain Mapping/methods
7.
Front Integr Neurosci ; 17: 1299087, 2023.
Article in English | MEDLINE | ID: mdl-38260006

ABSTRACT

To decipher the evolution of the hominoid brain and its functions, it is essential to conduct comparative studies in primates, including our closest living relatives. However, strong ethical concerns preclude in vivo neuroimaging of great apes. We propose a responsible and multidisciplinary alternative approach that links behavior to brain anatomy in non-human primates from diverse ecological backgrounds. The brains of primates observed in the wild or in captivity are extracted and fixed shortly after natural death, and then studied using advanced MRI neuroimaging and histology to reveal macro- and microstructures. By linking detailed neuroanatomy with observed behavior within and across primate species, our approach provides new perspectives on brain evolution. Combined with endocranial brain imprints extracted from computed tomographic scans of the skulls these data provide a framework for decoding evolutionary changes in hominin fossils. This approach is poised to become a key resource for investigating the evolution and functional differentiation of hominoid brains.

9.
Neuroimage ; 262: 119529, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35926761

ABSTRACT

Multi-Parameter Mapping (MPM) is a comprehensive quantitative neuroimaging protocol that enables estimation of four physical parameters (longitudinal and effective transverse relaxation rates R1 and R2*, proton density PD, and magnetization transfer saturation MTsat) that are sensitive to microstructural tissue properties such as iron and myelin content. Their capability to reveal microstructural brain differences, however, is tightly bound to controlling random noise and artefacts (e.g. caused by head motion) in the signal. Here, we introduced a method to estimate the local error of PD, R1, and MTsat maps that captures both noise and artefacts on a routine basis without requiring additional data. To investigate the method's sensitivity to random noise, we calculated the model-based signal-to-noise ratio (mSNR) and showed in measurements and simulations that it correlated linearly with an experimental raw-image-based SNR map. We found that the mSNR varied with MPM protocols, magnetic field strength (3T vs. 7T) and MPM parameters: it halved from PD to R1 and decreased from PD to MTsat by a factor of 3-4. Exploring the artefact-sensitivity of the error maps, we generated robust MPM parameters using two successive acquisitions of each contrast and the acquisition-specific errors to down-weight erroneous regions. The resulting robust MPM parameters showed reduced variability at the group level as compared to their single-repeat or averaged counterparts. The error and mSNR maps may better inform power-calculations by accounting for local data quality variations across measurements. Code to compute the mSNR maps and robustly combined MPM maps is available in the open-source hMRI toolbox.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Artifacts , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Myelin Sheath , Neuroimaging/methods
10.
Sci Adv ; 8(17): eabj7892, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35476433

ABSTRACT

We present the first three-dimensional (3D) concordance maps of cyto- and fiber architecture of the human brain, combining histology, immunohistochemistry, and 7-T quantitative magnetic resonance imaging (MRI), in two individual specimens. These 3D maps each integrate data from approximately 800 microscopy sections per brain, showing neuronal and glial cell bodies, nerve fibers, and interneuronal populations, as well as ultrahigh-field quantitative MRI, all coaligned at the 200-µm scale to the stacked blockface images obtained during sectioning. These unprecedented 3D multimodal datasets are shared without any restrictions and provide a unique resource for the joint study of cell and fiber architecture of the brain, detailed anatomical atlasing, or modeling of the microscopic underpinnings of MRI contrasts.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/pathology , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Microscopy , Nerve Fibers
11.
Magn Reson Med ; 88(2): 787-801, 2022 08.
Article in English | MEDLINE | ID: mdl-35405027

ABSTRACT

PURPOSE: High-resolution quantitative multi-parameter mapping shows promise for non-invasively characterizing human brain microstructure but is limited by physiological artifacts. We implemented corrections for rigid head movement and respiration-related B0-fluctuations and evaluated them in healthy volunteers and dementia patients. METHODS: Camera-based optical prospective motion correction (PMC) and FID navigator correction were implemented in a gradient and RF-spoiled multi-echo 3D gradient echo sequence for mapping proton density (PD), longitudinal relaxation rate (R1) and effective transverse relaxation rate (R2*). We studied their effectiveness separately and in concert in young volunteers and then evaluated the navigator correction (NAVcor) with PMC in a group of elderly volunteers and dementia patients. We used spatial homogeneity within white matter (WM) and gray matter (GM) and scan-rescan measures as quality metrics. RESULTS: NAVcor and PMC reduced artifacts and improved the homogeneity and reproducibility of parameter maps. In elderly participants, NAVcor improved scan-rescan reproducibility of parameter maps (coefficient of variation decreased by 14.7% and 11.9% within WM and GM respectively). Spurious inhomogeneities within WM were reduced more in the elderly than in the young cohort (by 9% vs. 2%). PMC increased regional GM/WM contrast and was especially important in the elderly cohort, which moved twice as much as the young cohort. We did not find a significant interaction between the two corrections. CONCLUSION: Navigator correction and PMC significantly improved the quality of PD, R1, and R2* maps, particularly in less compliant elderly volunteers and dementia patients.


Subject(s)
Dementia , Magnetic Resonance Imaging , Aged , Artifacts , Brain/diagnostic imaging , Humans , Motion , Prospective Studies , Reproducibility of Results
12.
Hum Brain Mapp ; 42(15): 4996-5009, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34272784

ABSTRACT

Ultra-high field MRI across the depth of the cortex has the potential to provide anatomically precise biomarkers and mechanistic insights into neurodegenerative disease like Huntington's disease that show layer-selective vulnerability. Here we compare multi-parametric mapping (MPM) measures across cortical depths for a 7T 500 µm whole brain acquisition to (a) layer-specific cell measures from the von Economo histology atlas, (b) layer-specific gene expression, using the Allen Human Brain atlas and (c) white matter connections using high-fidelity diffusion tractography, at a 1.3 mm isotropic voxel resolution, from a 300mT/m Connectom MRI system. We show that R2*, but not R1, across cortical depths is highly correlated with layer-specific cell number and layer-specific gene expression. R1- and R2*-weighted connectivity strength of cortico-striatal and intra-hemispheric cortical white matter connections was highly correlated with grey matter R1 and R2* across cortical depths. Limitations of the layer-specific relationships demonstrated are at least in part related to the high cross-correlations of von Economo atlas cell counts and layer-specific gene expression across cortical layers. These findings demonstrate the potential and limitations of combining 7T MPMs, gene expression and white matter connections to provide an anatomically precise framework for tracking neurodegenerative disease.


Subject(s)
Cerebral Cortex , Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Gene Expression/physiology , Myelin Sheath , Nerve Net , White Matter , Adult , Atlases as Topic , Cerebral Cortex/anatomy & histology , Cerebral Cortex/diagnostic imaging , Female , Humans , Male , Nerve Net/anatomy & histology , Nerve Net/diagnostic imaging , Neurodegenerative Diseases/diagnostic imaging , White Matter/anatomy & histology , White Matter/diagnostic imaging , Young Adult
13.
Neuroimage ; 239: 118255, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34119638

ABSTRACT

In Parkinson's disease, the depletion of iron-rich dopaminergic neurons in nigrosome 1 of the substantia nigra precedes motor symptoms by two decades. Methods capable of monitoring this neuronal depletion, at an early disease stage, are needed for early diagnosis and treatment monitoring. Magnetic resonance imaging (MRI) is particularly suitable for this task due to its sensitivity to tissue microstructure and in particular, to iron. However, the exact mechanisms of MRI contrast in the substantia nigra are not well understood, hindering the development of powerful biomarkers. In the present report, we illuminate the contrast mechanisms in gradient and spin echo MR images in human nigrosome 1 by combining quantitative 3D iron histology and biophysical modeling with quantitative MRI on post mortem human brain tissue. We show that the dominant contribution to the effective transverse relaxation rate (R2*) in nigrosome 1 originates from iron accumulated in the neuromelanin of dopaminergic neurons. This contribution is appropriately described by a static dephasing approximation of the MRI signal. We demonstrate that the R2* contribution from dopaminergic neurons reflects the product of cell density and cellular iron concentration. These results demonstrate that the in vivo monitoring of neuronal density and iron in nigrosome 1 may be feasible with MRI and provide directions for the development of biomarkers for an early detection of dopaminergic neuron depletion in Parkinson's disease.


Subject(s)
Dopaminergic Neurons/chemistry , Iron/analysis , Magnetic Resonance Imaging/methods , Substantia Nigra/cytology , Aged, 80 and over , Biophysics , Ferritins/analysis , Humans , Male , Melanins/analysis , Middle Aged , Models, Neurological , Parkinson Disease/metabolism , Parkinson Disease/pathology , Software , Substantia Nigra/chemistry
14.
Neuroimage ; 232: 117910, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33647497

ABSTRACT

OBJECT: This study evaluates inter-site and intra-site reproducibility at ten different 7 T sites for quantitative brain imaging. MATERIAL AND METHODS: Two subjects - termed the "traveling heads" - were imaged at ten different 7 T sites with a harmonized quantitative brain MR imaging protocol. In conjunction with the system calibration, MP2RAGE, QSM, CEST and multi-parametric mapping/relaxometry were examined. RESULTS: Quantitative measurements with MP2RAGE showed very high reproducibility across sites and subjects, and errors were in concordance with previous results and other field strengths. QSM had high inter-site reproducibility for relevant subcortical volumes. CEST imaging revealed systematic differences between the sites, but reproducibility was comparable to results in the literature. Relaxometry had also very high agreement between sites, but due to the high sensitivity, differences caused by different applications of the B1 calibration of the two RF coil types used were observed. CONCLUSION: Our results show that quantitative brain imaging can be performed with high reproducibility at 7 T and with similar reliability as found at 3 T for multicenter studies of the supratentorial brain.


Subject(s)
Brain/diagnostic imaging , Head/diagnostic imaging , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Adult , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Reproducibility of Results
15.
Sci Adv ; 6(41)2020 10.
Article in English | MEDLINE | ID: mdl-33028535

ABSTRACT

Superficial white matter (SWM) contains the most cortico-cortical white matter connections in the human brain encompassing the short U-shaped association fibers. Despite its importance for brain connectivity, very little is known about SWM in humans, mainly due to the lack of noninvasive imaging methods. Here, we lay the groundwork for systematic in vivo SWM mapping using ultrahigh resolution 7 T magnetic resonance imaging. Using biophysical modeling informed by quantitative ion beam microscopy on postmortem brain tissue, we demonstrate that MR contrast in SWM is driven by iron and can be linked to the microscopic iron distribution. Higher SWM iron concentrations were observed in U-fiber-rich frontal, temporal, and parietal areas, potentially reflecting high fiber density or late myelination in these areas. Our SWM mapping approach provides the foundation for systematic studies of interindividual differences, plasticity, and pathologies of this crucial structure for cortico-cortical connectivity in humans.

16.
Front Neuroanat ; 14: 536838, 2020.
Article in English | MEDLINE | ID: mdl-33117133

ABSTRACT

Post mortem magnetic resonance imaging (MRI) studies on the human brain are of great interest for the validation of in vivo MRI. It facilitates a link between functional and anatomical information available from MRI in vivo and neuroanatomical knowledge available from histology/immunocytochemistry. However, linking in vivo and post mortem MRI to microscopy techniques poses substantial challenges. Fixation artifacts and tissue deformation of extracted brains, as well as co registration of 2D histology to 3D MRI volumes complicate direct comparison between modalities. Moreover, post mortem brain tissue does not have the same physical properties as in vivo tissue, and therefore MRI approaches need to be adjusted accordingly. Here, we present a pipeline in which whole-brain human post mortem in situ MRI is combined with subsequent tissue processing of the whole human brain, providing a 3-dimensional reconstruction via blockface imaging. To this end, we adapted tissue processing procedures to allow both post mortem MRI and subsequent histological and immunocytochemical processing. For MRI, tissue was packed in a susceptibility matched solution, tailored to fit the dimensions of the MRI coil. Additionally, MRI sequence parameters were adjusted to accommodate T1 and T2∗ shortening, and scan time was extended, thereby benefiting the signal-to-noise-ratio that can be achieved using extensive averaging without motion artifacts. After MRI, the brain was extracted from the skull and subsequently cut while performing optimized blockface imaging, thereby allowing three-dimensional reconstructions. Tissues were processed for Nissl and silver staining, and co-registered with the blockface images. The combination of these techniques allows direct comparisons across modalities.

17.
Cereb Cortex ; 30(8): 4496-4514, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32297628

ABSTRACT

Short association fibers (U-fibers) connect proximal cortical areas and constitute the majority of white matter connections in the human brain. U-fibers play an important role in brain development, function, and pathology but are underrepresented in current descriptions of the human brain connectome, primarily due to methodological challenges in diffusion magnetic resonance imaging (dMRI) of these fibers. High spatial resolution and dedicated fiber and tractography models are required to reliably map the U-fibers. Moreover, limited quantitative knowledge of their geometry and distribution makes validation of U-fiber tractography challenging. Submillimeter resolution diffusion MRI-facilitated by a cutting-edge MRI scanner with 300 mT/m maximum gradient amplitude-was used to map U-fiber connectivity between primary and secondary visual cortical areas (V1 and V2, respectively) in vivo. V1 and V2 retinotopic maps were obtained using functional MRI at 7T. The mapped V1-V2 connectivity was retinotopically organized, demonstrating higher connectivity for retinotopically corresponding areas in V1 and V2 as expected. The results were highly reproducible, as demonstrated by repeated measurements in the same participants and by an independent replication group study. This study demonstrates a robust U-fiber connectivity mapping in vivo and is an important step toward construction of a more complete human brain connectome.


Subject(s)
Connectome/methods , Diffusion Tensor Imaging/methods , Neurons/cytology , Visual Pathways/cytology , Adult , Female , Humans , Image Processing, Computer-Assisted/methods , Male
18.
Magn Reson Med ; 82(5): 1804-1811, 2019 11.
Article in English | MEDLINE | ID: mdl-31293007

ABSTRACT

PURPOSE: To propose and validate an efficient method, based on a biophysically motivated signal model, for removing the orientation-dependent part of R2* using a single gradient-recalled echo (GRE) measurement. METHODS: The proposed method utilized a temporal second-order approximation of the hollow-cylinder-fiber model, in which the parameter describing the linear signal decay corresponded to the orientation-independent part of R2* . The estimated parameters were compared to the classical, mono-exponential decay model for R2* in a sample of an ex vivo human optic chiasm (OC). The OC was measured at 16 distinct orientations relative to the external magnetic field using GRE at 7T. To show that the proposed signal model can remove the orientation dependence of R2* , it was compared to the established phenomenological method for separating R2* into orientation-dependent and -independent parts. RESULTS: Using the phenomenological method on the classical signal model, the well-known separation of R2* into orientation-dependent and -independent parts was verified. For the proposed model, no significant orientation dependence in the linear signal decay parameter was observed. CONCLUSIONS: Since the proposed second-order model features orientation-dependent and -independent components at distinct temporal orders, it can be used to remove the orientation dependence of R2* using only a single GRE measurement.


Subject(s)
Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , Autopsy , Biophysics , Humans , Image Processing, Computer-Assisted/methods , Male , Middle Aged
19.
Brain ; 142(9): 2558-2571, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31327002

ABSTRACT

Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.


Subject(s)
Locus Coeruleus/diagnostic imaging , Locus Coeruleus/metabolism , Magnetic Resonance Imaging/methods , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/metabolism , Norepinephrine/metabolism , Biomarkers/metabolism , Humans
20.
Neuroimage ; 197: 707-715, 2019 08 15.
Article in English | MEDLINE | ID: mdl-28942063

ABSTRACT

The human neocortex is organized radially into six layers which differ in their myelination and the density and arrangement of neuronal cells. This cortical cyto- and myeloarchitecture plays a central role in the anatomical and functional neuroanatomy but is primarily accessible through invasive histology only. To overcome this limitation, several non-invasive MRI approaches have been, and are being, developed to resolve the anatomical cortical layers. As a result, recent studies on large populations and structure-function relationships at the laminar level became possible. Early proof-of-concept studies targeted conspicuous laminar structures such as the stria of Gennari in the primary visual cortex. Recent work characterized the laminar structure outside the visual cortex, investigated the relationship between laminar structure and function, and demonstrated layer-specific maturation effects. This paper reviews the methods and in-vivo MRI studies on the anatomical layers in the human cortex based on conventional and quantitative MRI (excluding diffusion imaging). A focus is on the related challenges, promises and potential future developments. The rapid development of MRI scanners, motion correction techniques, analysis methods and biophysical modeling promise to overcome the challenges of spatial resolution, precision and specificity of systematic imaging of cortical laminae.


Subject(s)
Cerebral Cortex/anatomy & histology , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...