Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 354: 120385, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382435

ABSTRACT

This paper uses an expert-based methodology to survey the barriers and strategies related to the implementation of nature-based solutions (NBS). The ambition of the paper is to offer a bird's eye overview of the difficulties encountered by NBS deployment and ways to overcome them. With a wide participation of 80 experts from COST Action Circular City, we identify barriers specific to 35 pre-defined NBS of the following four categories: Vertical Greening Systems and Green Roofs; Food and Biomass Production; Rainwater Management; and Remediation, Treatment, and Recovery. The research sheds light on how a major interdisciplinary - yet predominantly technically-oriented - community of scientists and practitioners views this important topic. Overall, the most relevant barriers are related to technological complexity, lack of skilled staff and training programs and the lack of awareness that NBS is an option. Our results highlight concerns related to post implementation issues, especially operation and maintenance, which subsequently affect social acceptance. The paper identifies a "chain" effect across barriers, meaning that one barrier can affect the existence or the relevance of other barriers. In terms of strategies, most of them target governance, information, and education aspects, despite the predominantly technical expertise of the participants. The study innovates with respect to state-of-the-art research by showing a fine-grained connection between barriers, strategies and individual NBS and categories, a level of detail which is not encountered in any other study to date.


Subject(s)
Cities , Nature
2.
Methods Mol Biol ; 2309: 105-111, 2021.
Article in English | MEDLINE | ID: mdl-34028682

ABSTRACT

Current knowledge on the mechanism of strigolactones (SLs) as signaling molecules during specific interactions in the rhizosphere is mainly related to the control of germination of parasitic weed seeds and hyphal branching of arbuscular mycorrhizal fungi. Thus, the role of plant secreted SLs in regulating the growth and development of root-colonizing fungi still remains controversial. Fusarium oxysporum can sense and respond to extracellular signals through oriented germ tube emergence and redirectioning of hyphal growth toward gradients of nutrients, sex pheromones, or plant root exudates. However, chemoattractant activity of SLs against microorganisms living in the soil has not been tested so far. Here we propose a quantitative chemotropic assay to understand if and how soil fungi could sense gradients of SLs and SLs-like sources. In the example case of F. oxysporum, hyphae of fungal representative mutants preferentially grow toward the synthetic SL analog GR24; and this chemotropic response requires conserved elements of the fungal invasive growth mitogen-activated protein kinase (MAPK) cascade.


Subject(s)
Fusarium/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Lactones/pharmacology , Plant Growth Regulators/pharmacology , Plant Roots/microbiology , Soil Microbiology , Tropism/drug effects , Fusarium/growth & development , Fusarium/metabolism
3.
Pest Manag Sci ; 72(11): 2043-2047, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26757233

ABSTRACT

BACKGROUND: Seed germination is a key phase of the parasitic plant life cycle that is stimulated by the secondary metabolites, mainly strigolactones (SLs), secreted by the host roots. Interventions during this stage would be particularly suitable for parasitic weed management practices, as blocking these chemical signals would prevent seed germination and thus parasite attack. Four fungal strains with different ecological functions were considered for their possible ability to metabolise SLs: Fusarium oxysporum and F. solani, biocontrol agents of Phelipanche ramosa; Trichoderma harzianum, a potential biopesticide; Botrytis cinerea, a phytopathogenic fungus. Four different SLs [the natural strigol, 5-deoxystrigol (5DS) and 4-deoxyorobanchol (4DO), and the synthetic analogue GR24] were added to fungal cultures, followed by determination of the SL content by liquid chromatography-tandem mass spectrometry. RESULTS: Differences were observed among microorganisms, treatments and SLs used. T. harzianum and F. oxysporum were the most capable of reducing the SL content; considering the whole set of fungi used, 5DS and 4DO proved to be the most degradable SLs. CONCLUSIONS: Beneficial microscopic fungi could differently be used for biocontrolling parasitic weeds, acting as a 'physiological' barrier, by preventing the germination of their seeds through the ability to biotransform the stimulatory signals. © 2016 Society of Chemical Industry.


Subject(s)
Botrytis/metabolism , Fusarium/metabolism , Lactones/metabolism , Plant Weeds , Trichoderma/metabolism , Weed Control/methods , Plant Weeds/drug effects
4.
ScientificWorldJournal ; 2014: 150432, 2014.
Article in English | MEDLINE | ID: mdl-25143963

ABSTRACT

Orobanche cumana is a holoparasitic plant naturally distributed from central Asia to south-eastern Europe, where it parasitizes wild Asteraceae species. It is also an important parasitic weed of sunflower crops. The objective of this research was to investigate genetic diversity, population structure, and virulence on sunflower of O. cumana populations parasitizing wild plants in eastern Bulgaria. Fresh tissue of eight O. cumana populations and mature seeds of four of them were collected in situ on wild hosts. Genetic diversity and population structure were studied with SSR markers and compared to weedy populations. Two main gene pools were identified in Bulgarian populations, with most of the populations having intermediate characteristics. Cross-inoculation experiments revealed that O. cumana populations collected on wild species possessed similar ability to parasitize sunflower to those collected on sunflower. The results were explained on the basis of an effective genetic exchange between populations parasitizing sunflower crops and those parasitizing wild species. The occurrence of bidirectional gene flow may have an impact on wild populations, as new physiological races continuously emerge in weedy populations. Also, genetic variability of wild populations may favour the ability of weedy populations to overcome sunflower resistance mechanisms.


Subject(s)
Orobanchaceae/genetics , Orobanchaceae/physiology , Bulgaria , Gene Flow , Helianthus/parasitology , Orobanchaceae/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...