Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 32(4): 842-850.e4, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35030328

ABSTRACT

A breeding colony of notothenioid icefish (Neopagetopsis ionah, Nybelin 1947) of globally unprecedented extent has been discovered in the southern Weddell Sea, Antarctica. The colony was estimated to cover at least ∼240 km2 of the eastern flank of the Filchner Trough, comprised of fish nests at a density of 0.26 nests per square meter, representing an estimated total of ∼60 million active nests and associated fish biomass of >60,000 tonnes. The majority of nests were each occupied by 1 adult fish guarding 1,735 eggs (±433 SD). Bottom water temperatures measured across the nesting colony were up to 2°C warmer than the surrounding bottom waters, indicating a spatial correlation between the modified Warm Deep Water (mWDW) upflow onto the Weddell Shelf and the active nesting area. Historical and concurrently collected seal movement data indicate that this concentrated fish biomass may be utilized by predators such as Weddell seals (Leptonychotes weddellii, Lesson 1826). Numerous degraded fish carcasses within and near the nesting colony suggest that, in death as well as life, these fish provide input for local food webs and influence local biogeochemical processing. To our knowledge, the area surveyed harbors the most spatially expansive continuous fish breeding colony discovered to date globally at any depth, as well as an exceptionally high Antarctic seafloor biomass. This discovery provides support for the establishment of a regional marine protected area in the Southern Ocean under the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) umbrella. VIDEO ABSTRACT.


Subject(s)
Seals, Earless , Animals , Antarctic Regions , Fishes , Food Chain , Water
2.
Glob Chang Biol ; 28(1): 6-7, 2022 01.
Article in English | MEDLINE | ID: mdl-34674355
3.
Polar Biol ; 44(5): 875-886, 2021.
Article in English | MEDLINE | ID: mdl-33814683

ABSTRACT

Knowledge of seasonal dynamics and composition of meroplankton (larvae of benthic invertebrates) is rather limited for sub-Antarctic regions. We studied the seasonal dynamics of meroplankton in a sub-Antarctic proglacial basin (Gallegos Sound, Chile), by examining changes in the meroplankton community in relation to hydrographic variables along four sampling cruises between early winter 2010 and late winter 2011. The local meroplankton community was composed of 39 larval morphotypes distributed among 11 major taxa, being polychaetes the best represented (15 larvae morphotypes), and bivalve the most abundant. We found distinct seasonal differences in terms of meroplanktonic composition and abundance, with higher abundance and larval morphotype number during austral spring and late winter, and lower in summer and early winter. The pattern observed for meroplankton was directly related to seasonal variations of fluorescence of chlorophyll a and temperature. We found meroplankton abundances lower than those of other sub- and Polar environments. However, meroplanktonic temporal dynamics showed a common pattern for sub- and Polar fjords, suggesting a strong link between benthic spawning and the occurrence of phytoplankton blooms. Supplementary Information: The online version contains supplementary material available at 10.1007/s00300-021-02823-6.

4.
Nat Commun ; 11(1): 3448, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32636371

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Commun ; 11(1): 2226, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32376915

ABSTRACT

Ice retreat in West Antarctica and Antarctic Peninsula has led to important changes in seafloor communities and gains in benthic blue carbon. In most of the Antarctic, however, sea ice increased between the 1970s and 2014, but its effects on the benthos remain largely unexplored. Here, we provide a 1988-2014 record of macro- and megafauna from the north-eastern Weddell Sea shelf, where benthic biomass decreased by two thirds and composition shifted from suspension feeders to deposit feeders. Concomitant increases in sea-ice cover suggest a reduced flux of primary production to the benthos. As benthic communities are major repositories for Antarctic biodiversity and play an important role in biogeochemical cycling, the observed changes have far-reaching consequences for the Antarctic ecosystem and its feedback to the climate system. The findings underscore the importance of long-term ecological monitoring in a region vulnerable to warming and ice-shelf collapse.


Subject(s)
Biodiversity , Ecosystem , Ice Cover , Antarctic Regions , Biomass , Carbon Dioxide , Climate , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...