Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: mdl-34129516

ABSTRACT

Anthropogenic Pb is widespread in the environment including remote places. However, its presence in Canadian Arctic seawater is thought to be negligible based on low dissolved Pb (dPb) concentrations and proxy data. Here, we measured dPb isotopes in Arctic seawater with very low dPb concentrations (average ∼5 pmol ⋅ kg-1) and show that anthropogenic Pb is pervasive and often dominant in the western Arctic Ocean. Pb isotopes further reveal that historic aerosol Pb from Europe and Russia (Eurasia) deposited to the Arctic during the 20th century, and subsequently remobilized, is a significant source of dPb, particularly in water layers with relatively higher dPb concentrations (up to 16 pmol ⋅ kg-1). The 20th century Eurasian Pb is present predominantly in the upper 1,000 m near the shelf but is also detected in older deep water (2,000 to 2,500 m). These findings highlight the importance of the remobilization of anthropogenic Pb associated with previously deposited aerosols, especially those that were emitted during the peak of Pb emissions in the 20th century. This remobilization might be further enhanced because of accelerated melting of permafrost and ice along with increased coastal erosion in the Arctic. Additionally, the detection of 20th century Eurasian Pb in deep water helps constrain ventilation ages. Overall, this study shows that Pb isotopes in Arctic seawater are useful as a gauge of changing particulate and contaminant sources, such as those resulting from increased remobilization (e.g., coastal erosion) and potentially also those associated with increased human activities (e.g., mining and shipping).


Subject(s)
Human Activities , Seawater , Arctic Regions , Canada , Geography , Humans , Lead/analysis , Seawater/chemistry
2.
Talanta ; 223(Pt 2): 121734, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33298262

ABSTRACT

The long-lived radioisotopes of Th and Pa are unique tracers for quantifying rates of biogeochemical processes in the ocean. However, their generally low concentrations (sub-fg/kg for 230Th and 231Pa and pg/kg for 232Th) in seawater make them difficult to measure. Here, we present a new approach to determine 232Th and 230Th using Nobias PA-1 chelating resin following a bulk-extraction technique, and report for the first time the use of this resin to measure 231Pa concentrations. This method has high extraction efficiency (>80%) at pH of 4.4 ± 0.2 and the lowest procedural blanks reported in the literature: 1.0 ± 0.2 pg, 0.10 ± 0.03 fg, and 0.02 ± 0.01 fg for 232Th, 230Th, and 231Pa, respectively, representing 3%, 0.02%, and 0.01% of the total dissolved 232Th, 230Th, and 231Pa found in 5 L of a typical low-concentration surface seawater sample from the subtropical Pacific Ocean. The procedure yields data with high precision for all three isotopes (0.76% for 232Th, 0.89% for 230Th, and 0.96% for 231Pa, 2σ), allowing us to reliably measure Th and Pa in the oceans even at concentrations as low as those found in surface waters of the South Pacific Ocean. The accuracy of this method was confirmed by the analysis of well-characterized standard solutions (SW STD 2010-1 and SW STD 2015-1) and seawater samples collected aboard the FS Sonne (cruise SO245) during the UltraPac cruise in the South Pacific Ocean. Simultaneous and rapid extraction of 232Th, 230Th and 231Pa from seawater, as well as the high precision and accuracy of this method makes it ideal for both spatially and temporally high-resolution studies.


Subject(s)
Chelating Agents , Seawater , Isotopes , Oceans and Seas
3.
Proc Natl Acad Sci U S A ; 117(45): 27862-27868, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33093199

ABSTRACT

Fossil-fuel emissions may impact phytoplankton primary productivity and carbon cycling by supplying bioavailable Fe to remote areas of the ocean via atmospheric aerosols. However, this pathway has not been confirmed by field observations of anthropogenic Fe in seawater. Here we present high-resolution trace-metal concentrations across the North Pacific Ocean (158°W from 25°to 42°N). A dissolved Fe maximum was observed around 35°N, coincident with high dissolved Pb and Pb isotope ratios matching Asian industrial sources and confirming recent aerosol deposition. Iron-stable isotopes reveal in situ evidence of anthropogenic Fe in seawater, with low δ56Fe (-0.23‰ > δ56Fe > -0.65‰) observed in the region that is most influenced by aerosol deposition. An isotope mass balance suggests that anthropogenic Fe contributes 21-59% of dissolved Fe measured between 35° and 40°N. Thus, anthropogenic aerosol Fe is likely to be an important Fe source to the North Pacific Ocean.


Subject(s)
Air Pollutants/analysis , Fossil Fuels/adverse effects , Aerosols/analysis , Asia , Environmental Monitoring/methods , Iron/adverse effects , Iron Isotopes/adverse effects , Pacific Ocean , Phytoplankton/drug effects , Phytoplankton/metabolism , Seawater/analysis , Seawater/chemistry , Trace Elements/adverse effects
4.
Environ Sci Technol ; 48(14): 7730-7, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24952958

ABSTRACT

Understanding biogeochemical cycling of trace metals in the ocean requires information about variability in metal concentrations and distribution over short, e.g., diel, time scales. Such variability and the factors that influence it are poorly characterized. To address this shortcoming, we measured trace metal concentrations in the total dissolved, colloidal, and soluble fractions every 3-4 h for several consecutive days and nights in surface waters from a coastal station. Our results show that both the concentration and the size partitioning of some biologically essential (Fe, Cu, Co, and Cd) and anthropogenic (Pb) metals are subjected to diel variations that may be related to both inorganic and biological processes (e.g., photolysis of high-molecular-weight dissolved organic matter, photoinduced reduction/oxidation of metal(hydrous)oxides, uptake by growing phytoplankton, degradation of organic matter, lysis, and grazing). The largest fluctuations were observed in the soluble and colloidal pools. Soluble Fe varied during the day-night cycle by a factor of 40, and the contribution of colloidal Pb to the total dissolved fraction increased from 6±3% during the day to as much as 70-80% during the night. Our results suggest that changes occurring over time scales of hours need to be considered when collecting and interpreting trace metal data from the surface ocean.


Subject(s)
Ecosystem , Islands , Metals/analysis , Seawater/chemistry , California , Chemical Fractionation , Colloids , Geography , Light , Phytoplankton/metabolism , Solubility , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...