Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1436-1439, 2022 07.
Article in English | MEDLINE | ID: mdl-36086478

ABSTRACT

Prostate cancer is one of the most common cancers in men, with symptoms that may be confused with those caused by benign prostatic hyperplasia. One of the key aspects of treating prostate cancer is its early detection, increasing life expectancy and improving the quality of life of those patients. However, the tests performed are often invasive, resulting in a biopsy. A non-invasive alternative is the magnetic resonance imaging (MRI)-based PI-RADS v2 classification. The aim of this work was to find objective biomarkers that allow the PI-RADS classification of prostate lesions using a radiomics approach on Multiparametric MRI. A total of 90 subjects were analyzed. From each segmented lesion, 609 different texture features were extracted using five different statistical methods. Two feature selection methods and eight multiclass predictive models were evaluated. This was a multiclass study in which the best AUC result was 0.7442 ± 0.0880, achieved with the Naïve Bayes model using a subset of 120 features. Valuable results were also obtained using the Random Forests model, obtaining an AUC of 0.7394 ± 0.0965 with a lower number of features (52). Clinical Relevance- The current study establishes a methodology for classifying prostate cancer and supporting clinical decision-making in a fast and efficient manner and avoiding additional invasive procedures using MRI.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Bayes Theorem , Humans , Magnetic Resonance Imaging/methods , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Quality of Life
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 493-496, 2022 07.
Article in English | MEDLINE | ID: mdl-36086525

ABSTRACT

Osteoarthritis is one of the most disabling diseases in developed countries. Its etiology is not firmly established, and the diagnosis is made by observing radiographs, assigning a degree of severity based on the information displayed. For this reason, the diagnosis is usually late and determined by the subjectivity of the doctor, which implies a restriction of the treatment. Magnetic resonance imaging (MRI) has allowed us to see in greater detail the alterations produced in soft joint structures. In this work, biomarkers for an early diagnosis of knee osteoarthritis have been developed by means of textures analysis on MRI. For this purpose, 50 subjects underwent T1-weighted MR image acquisitions: 25 controls and 25 diagnosed with knee osteoarthritis between grades I and III. Six regions were segmented on these images, corresponding to the femorotibial cartilage, femoral condyles, and tibial plateau. 43 textures were extracted for each region of interest (ROI) employing 5 statistical methods and 5 different predictive models were trained and compared. In addition, a study of the thickness of the cartilage was carried out to make a comparison with the texture analysis. The best result has been obtained using a K-nearest neighbor model with the combination of 33 textures (maximum value of AUC = 0.7684). Furthermore, in the analysis of the cartilage thickness, no statistically significant differences were found. Finally, it is concluded that the texture analysis has great potential for the diagnosis of knee osteoarthritis. Clinical Relevance - The current study establishes a methodology for an early diagnosis of knee osteoarthritis by means of MRI-based texture analysis, in a fast and objective manner.


Subject(s)
Osteoarthritis, Knee , Early Diagnosis , Humans , Knee Joint , Magnetic Resonance Imaging/methods , Osteoarthritis, Knee/diagnostic imaging , Tibia
SELECTION OF CITATIONS
SEARCH DETAIL
...